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Abstract

This thesis develops an innovative approach to the desiga of a flight control system for performing
the large-amplitude velocity vector roll maneuver at high angles of attack (AOAs). A six degree of
freedom aircraft model is developed fiom the fundamental nine-state equations of motion using a modified
linearization technique. The MIMO (multiple-input muitiple-output) Quantitative Feedback Theory (QFT)
robust control design technique is then used to jointly address the system nonlinearities present in this
maneuver and the changes in the system parameters due to changes in flight condition, treating them as
structured uncertainty in the design of a three-axis rate-commanded control system. The development of a
weighting matrix, based on the funda..entals of the aileron-rudder interconnect, aids in this design process.
Nonlinear six degree-of-freedom closed-loop control system simulations demonstrate the accuracy of the
developed models, the validity of the QFT designed compensator and prefilter, and the successful initiation

and arrest of the velocity vector roll maneuver.

xii



EVALUATION OF MODERATE ANGLE OF ATTACK ROLL
OF A
DUAL ENGINE, THRUST VECTORING AIRCRAFT

USING QUANTITATIVE FEEDBACK THEORY

1. Introduction

The combat performance of a fighter aircraft is typically gauged by the aircraft's turning
capabilities, which are dictated by the structural and aerodynamic angle of attack (AOA) limits of the
aircraft. The designers of today's high performance research and fighter aircraft have significantly
extended the structural limits through the use of advanced metallic and composite materials, and are now
focusing on the AOA limits of these aircraft. Advanced control hardware, such as thrust vectoring nozzles,
have been introduced to provide more control authority at high AOAs, and research has now turned toward
the design of flight control systems which can take advantage of this advanced hardware to control high
AOA flight. Within the past three years, research aircraft have performed loaded roll maneuvers at AOAs
as high as fifty degrees, compared to the previous limits of approximately twenty-five degrees {27]. This
performance increase does not, however, come without a price; the flight control systems required to
control these aircraft at higher AOAs have become increasingly large and complex. Therefore, to allow for
continued performance increases, designers are strongly motivated to exploie alternate design techniques

which may reduce flight control system complexity without sacrificing performance.

1.1. Background
The flight envelope of a typical high performance fighter aircraft, as shown in Fig. 1, bounds the
region of flight for that aircraft. At any operating point within this envelope, a highly coupled, nonlinear,

time-varying set of equations, called the equations of motion {EOM), describe the motion of the aircraft.




The coefficients of these EOM exhibit large variations as the operating point changes within the aircraft
flight envelope. Theoretically, a different set of equations describes the motion of the aircraft at each
operating point within the flight envelope. However, practical flight control design requires specified
performance throughout most, if not all, of the flight envelope, and the designer wsuld therefore require an
infinite number of operating points. Since this is not mathematically tractable, the designer typically splits
the flight envelope into regions of flight, as shown in Fig. 1, and identifies several operating points in each
region to serve as the basis of the flight contro} design.

As the aircraft's flight envelope expands, the number of operating points must also increase. This is
especially true in high AOA flight, where the aircraft dynamics change significantly with only a slight
change in AOA. To properly account for these changes using the point design methods, the number of
operating points in the high AOA region of the flight envelope must increase significantly. The flight
control system must be able to manage the transition from one of these operating poirits to the next, and
then be able to manage the structured uncertainty associated with all the operating points in between the
design points. In other words, it must provide robust compensation over th~ entire range of structured

parameter uncertainty. The linear multivariable design methods used today do not do this well.

60k T
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@- huni Engine Temperature Limit
Alutude s .
(ft) Subsonic rggzzomc
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) Combat
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| Landing
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Figure 1. Flight Envelope of a High-Performance Aircraft



This is not, unfortunately, the whole story. To use the lincar multivariable design techniques at
each of the aforementioned operating points, the designer must extract a linear model of the aircraft from
the nonlinear EOM. Using standard linearization techniques, this linear model is valid for small
perturbations atout the trim condition at that particular flight condition (F.C.). At most operating points
within the flight envelope this linear model provides sufficient fidelity for control system design. In the
high AOA region of the flight envelope, however, the robustness of this linear model is significantly
reduced due to the highly nonlinear, coupled nature of the EOM at high AOAs. Even very small departures
from a high AOA trim condition can violate the integrity of the conventionally obtained linearized model.
Designing for maneuvers at high AOAs therefore requires a robust control design technique, rendering the
linear multivariable point design techniques nearly useless.

For this reason, flight control designers are investigating alternative design techniques for the high
AOA region of flight. Enns, et al., [9, 4, 28] have adopted a nonlinear design technique called dynamic
inversion which essentially inverts the dynamic nonlinear EOM in order to generate the actuator commands
required for desired rates of change of the state variables. The resulting design is a full-envelope control
law requiring no gain scheduling. However, the resulting control system requires that the entire
aerodynamic data base be stored in the flight control system memory, therefore requiring more memory
space than a gain scheduled flight control law! Buffington, et al., [3] are employing a variation of the
dynamic inversion method, using dynamic inversion for an inner-loop design. The Mu-synthesis H_ design
technique is then used to design an outer-loop in an effort to improve the robustness of the design. Finally,
Chiang, et al., [S] are attempting to use the linear H_ design technique for particular maneuvers.

This thesis introduces an innovative approach to the design of flight control systems for high AOA
maneuvering. Quantitative Feedback Theory (QFT), developed by Dr. Isaac Horowitz, is a feedback
control design technique capable of guaranteeing a priori specified performance in a large problem class
where the structured plant parameter variation is uncertain but bounded. By bounding the variations in the
aircraft parameters throughout a large amplitude maneuvers at high AOAs, over several F.C.s, the QFT

design technique could potentially be used to synthesize a single fixed feedback control law to control an
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aircraft throughout the maneuvers, and also operate over a range of F.C.s, rather than at just one operating
point in the flight envelope. In this thesis, QFT is used both to address this uncertainty and to attack the

nonlinearities inherent to the high AOA flight regime.

1.2. QFT History

QFT has been shown to provide guaranteed control system performance for a large class of systems
with highly uncertain plants (structured plant parameter uncertainty) [8, 15]. The designer can specify the
allowable range of system response and, with knowledge only of the range of variation in the plant's
parameters, synthesize the compensator required to guarantee the a priori specified system performance.
This differs from other point design techniques in that every operating point falling within the bounded
range of plant variation will have the desired response characteristics, not just the finite number designed
for in the point design techniques. In other words, only QFT provides robust compensation over the entire
range of structured parameter uncertainty.

In flight control system design, the designer usually has multiple control inputs and multiple outputs
to be controlled. This type of system is defined as a multiple-input multiple-output (MIMO) system. In
1963, Dr. Horowitz presented, for the first time, a technique capable of synthesizing a design around
uncertain MIMO system plants [13]. This was the first formulation of the QFT family of design
techniques. Considerable work in multivariable control system design both preceded and followed the
publication of this book, but dealt with design synthesis in cases where the system plant was known, that is
point designs. In 1979, Dr. Horowitz presented a simpler multivariable design technique, based on his
earlier work, for designing feedback around highly uncertain plants {14, 16]. It is now well known as QFT.

The essential features of the QFT control design paradigm are [15):

o It is a frequency domain technique

o The MIMO solution is reduced to a set of multiple-input single-output (MISO) equivalent problems

o The design is tuned to the extent of the structured uncertainty and performance tolerances
established a priori. Hence, it is quantitative in nature.




QFT is particularly attractive for the MIMO control system design case since the design problem
can be decomposed into more tractable MISO cases where the design execution is performed on single
loop equivalent systems [14]. A quick look at the complexity of even a 3-dimensional MIMO problem
shows vividly the significance of this capability.

QFT was, in spite of its demonstrated merit, almost immediately criticized for its inherent non-
optimality and overdesign. Dr. Horowitz admitted from the start that the method made no optimality claim
(14, 16]). He was quick to point out though that "the technique guarantees a satisfactory design ... by a
comparatively straightforward systematic procedure” and no other design technique could make that claim
[29].

In later work in 1982, Dr. Horowitz improved his formulation of QFT and proposed a method to
reduce the inherent overdesign by making use of the fact that there is some correlation in the uncertainties
between the elements of the system plant {15]. Knowledge of this correlation allows the designer to further
reduce the loop design bandwidth and thus the overdesign of the final design solution. This improved
formulation of the QFT, referred to as Method Two, is presently being used extensively for flight control
system design problems at the Air Force Institute of Technology (AFIT). It has been applied quite
successfully to a number of very different design problems and aircraft. The following partial list

enumerates some of the AFIT thesis efforts in QFT flight control research.

o Amold -- FCS Reconfiguration Using OFT (2]

o Clough -- Reconfiguration for a STOL Aircraft Using QFT [6]

o Hamilton -- QFT Digital Controller for an Unmanned Research Vehicle [12)

e Migyanko -- Integrated Flight/Propulsion Control for a STOL Aircraft Using QF T [18)
o Russell -- Analog QFT Design for the KC-135 [23]

o Schneider -- 4FTI/F-16 FCS Design Using Digital QFT [26]

o Wheaton -- Automatic FCS Design for an Unmanned Research Vehicle using Digital QFT {29}




QFT is applied to square (/ = m) system plants with / inputs and m outputs. In flight control design,
the designer typically has more control inputs than outputs to be controlled (/ > m), and a decision must be
made as to how to use the extra inputs. This is always the case, regardless of the design technique
employed [29]. For the QFT design problem, a lxm weighting matrix W can be used to blend the / inputs
into m general inputs. Obviously, the formation of the nxm effective QFT plant (PW) produces a variation
of the original system plant and thus proper selection of the weighting matrix is critical in maintaining the
integrity of the original plant. A further consideration on the weighting matrix selection is that the
determinant of the resulting mxm effective plant is preferably minimum-phase (m.p.)or, in other words, the
determinant must have no zeros located in the right half s-plane. Preferably m.p. implies that certain non-
minimum phase (n.m.p.) characteristics can be dealt with.

In one of the first digital QFT flight control system designs, Maj. Amold used a W matrix of plus
ones, zeros, and minus ones whose elements were assigned based solely on physical insight and on the
particular aircraft-specific control knowledge [2]. Later, Capt. Clough adjusted the magnitudes of the
elements to other than ones and zeros in his W matrix using basically a trial and error procedure. Lt.
Hamilton [12] made good progress at identifying some possible analytic approaches to improving the W
matrix by a trial -.ad error selection process. The weighting matrix selection for QFT compatibility is

probably the single most important part of the overall design effort [20].

1.3. Problem

The high AOA, large-amplitude maneuver to be considered in this thesis is the velocity vector (or
stability axis) roll. The velocity vector of an aircraft represents the speed and direction of the center of
gravity of the aircraft at any instant in time, and the AOA of an aircraft is defined as the angle included
between the aircraft's velocity vector and the aircraft's body x-axis, as shown in Fig. 2. A high AOA
velocity vector roll can therefore be defined as the rotation of an aircraft about the axis formed by the
aircraft's velocity vector. This maneuver is extremely difficult to control for several reasons. First, an

aircraft's control surface deflections, and the adverse yaw phenomenon due to these deflections, provide



moments primarily about the aircraft body axes rather than the stability axes. As the aircraft's AOA
increases from near zero, the control surfaces' effectiveness decreases (due to the aerodynamics and the
seperation of the body and stability axes) and the requirement for control surface management becomes an
increasingly difficult, and critical, task. The pitching moment induced by high roll rates creates additional
difficulties in controlling the velocity vector roll. Because much of the aircraft's weight is located fore and
aft of the center of gravity, normal acceleration tends to draw the nose and tail of the aircraft farther from
the axis of rotation, resulting in a positive pitch rate and an increase in AOA. Perhaps the most significant
difficulty in designing a controller fer a high AOA velocity vector roll is accounting for the nonlinearities
introduced into the system by the maneuver itself. These nonlinearities must be present in the awcraft
maodel that is to be used in the control system design. Thus, standard linear aircraft models and standard
flight control design techniques that hinge on the seperation of the longitudinal and lateral/directional
channels cannot be used.

The purpose of this thesis is therefore three-fold: 1) explore the nonlinearities of a thirty-degree
AOA velocity vector roll, 2) develop an aircraft model which accurately represents these nonlinearities,
and, using QFT, 3) design a flight control system to control the thrust vectored F-18 High Angle of Attack

Research Vehicle (HARV) aircraft through the velocity vector roll maneuver over a range of F.C.s.

Body x-axis

o/

IS

Velocity Vector

Figure 2. Aircraft Velocity Vector and Angle of Attack ()




1.4. Scope

This thesis focuses on the development of an aircraft model suitable for velocity vector roll control
system analysis and design, and on the design of the flight control system using QFT. Special emphasis is
placed on the nonlinear aspects of this design. Therefore, the other source of parameter variation in the
QFT model, the range of F.C.s within the high AOA region of the flight envelope, is limited to one AOA,
viz., thirty degrees. At this AOA, trim conditions at various altitudes, and therefore at different speeds, can
then serve as the source of FC parameter variation in the QFT model. Issues associated with the
implementation of the flight control system, such as the development of a discrete-time controller, are not

addressed in this thesis.

1.5. Approach

The use of the QFT design technique allows both changes in F.C. within the high AOA region of
the flight envelope and nonlinearities introduced by the velocity vector roll maneuver to be treated as
structured parameter variations (bounded uncertainties). Because the flight envelope region in which high
AOA flight can occur is relatively small, and the F.C.s are limited to one AOA, only modest changes in the
system parameters due to changes in F.C. are expected. However, the nonlinearities due to large
excursions in roll rate and in bank angle throughout the velocity vector roll may not be as well behaved.
Therefore, the first phase of this thesis is the development of an aircraft model suitable for a rather
unconventional velocity vector roll control system design.

This model can be realized ; two steps. First, the full state, nonlinear EOM are partially linearized
so that only the nonlinearities due to large excursions in roll rate and in bank angle throughout a velocity
vector roll remain. This implies that the EGM must be defined in, or transformed to, the sta* ity axes
system (the axes system in which the aircraft's velocity vector lies on the x-axis). The velocitv vector roll
then involves only pure roll rate and bank angle, versus mixed rates and angles in the body axes system.

According to the QFT methodology, the second step of model development consists of reducing the
partially linearized model of step one into a set of linear QFT models which, as a whole, accurately

represent the nonlinear system. Because of the computational requirements of the QFT design process,




MIMO QFT has only been applied to 3x3 problems. Rather than venturing into new, higher-order QFT
design methods, the nonlinear aircraft model is reduced to several 3x3 linear models. The reduction
method used in this thesis involves a time-scale separation of the velocity vector roll. As shown in Figure
3, a velocity vector roll can be split into two primary regions, a transition region and a "free stream" region.
In the "free stream" region the roll rate is nearly constant, as are all the other states of the system except the
bank angle which may be obtained from the roll rate. The aircraft can therefore be modeled with the
standard set of linear equations of motion, and the controls problem can then be treated as an optimal
control problem of maximizing roll rate while minimizing excursions in AOA and sideslip with the
available control authority. In contrast, the roll rate in the transition region changes dramatically, butin a
relatively short amount of time. Because of the short time span of the transition region, the "fast" states of
the system (pitch, roll and yaw rates) are dominant. If the pitch and yaw rates are kept to a minimal level,
then changes in the corresponding "slower" states (AOA and sideslip) will be negligible and these states
can be removed. Therefore, a three degree-of-freedom (DOF) system of the "fast" states can be used in the
transition region, allowing the QFT design methodology to be used. For this reason, the scope of this

thesis is limited to the initiation and termination phases of the velocity vector roll at moderate AOAs.

P \[ Free Stream Region
P 4

0 t \ / T "t

Two Transition Regions

Figure 3. Time-Scale Separation of a Velocity Vector Roll




Because more than three control inputs are available in the HARYV aircraft, a weighting matrix must
be used to make the system square, that is, 3x3. Therefore, this second step of model development also
requires the development of a weighting matrix and the formation of effective plants for the QFT design.

The second phase of this thesis is the design of the QFT compensator and prefilter. The design

process involves the following steps:

1. Invert the plant matrices and ensure that the design is still tractable,
2. Define and model the desired design specifications.
3. Design the first loop compensator and prefilter.

4. Design the second and third loop compensators and prefilters using the standard or improved
method, depending on the exact nature of the system.

5. Validate the design through a stability analysis and time domain tracking response.
These steps are explained in detail as they are used in the actual design.

The final phase of this thesis 1s the simulation of the flight control system. Closed-loop systems
based on the 3x3 QFT model, and then on the nonlinear model, are modeled and simulated in MATLAB's
dvaamic simulation environment, Simulink. These simulations demonstrate the effectiveness of the flight

control system in controlling the transition regions of a velocity vector roll.

1.6. Assumptions
A number of standard assumptions are generally made in this type of problem to simplify the

system. Below is a list of all the assumptions that apply for this study.

o The aircraft mass is constant during command input.

o The aircraft is a rigid body.

o The earth is an inertial reference frame.

o The gravitational acceleration is constant.

o The atmosphere is fixed in relation to the earth and based on the NASA 1962 Standard Atmosphere.

o The aircraft thrust setting and velocity is constant.
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1.7. Presentation

This thesis contains eight chapters. Chapter 2 presents the development of the partially linearized
six DOF aircraft model appropriate to velocity vector design and analysis. Chapter 3 extends the aircraft
medel development to a three DOF system suitable for the QFT design technique, and presents a weighing
matrix strategy. Chapter 4 discusses the QFT theory applicable to this study, Chapter 5 describes the actual
QFT cascade compensator and prefilter designs, and Chapter 6 presents the design simulation results.
Chapter 7 enhances the performance of the closed-loop system with a modified weighting matrix and
compensator, and presents design simulation results for this modified system. Chapter 8 presents a

summary of the highlights of the study, the conclusions drawn, and recommendations for future efforts.

1.8. Notation

Some of the standard notation used in this study is given below. This list is not all inclusive.
Notation used for the QFT design process is generally standard QFT notation as it appears in the literature,
e.g. [8], and its meaning is specified as it appears in this thesis.

o Scalar variables and scalar components of vectors and matrices are denoted by upper or lower case
italic type.

¢ Vectors are denoted by lower and upper case boldface letters.
¢ Upper case vectors have s-plane transformed elements.

o Lower case vectors have time-domain element variables or are frequency plane elements of a
matrix or vector.

¢ Matrices are denoted by upper case boldface letters.

¢ Matrices contain either time-domain or frequency-domain elements. A(f) and A(s) denote a matrix
with time-domain and s-plane domain elements, respectively.

¢ When the independent variable is not given, the time-domain is usually assumed unless the
frequency-domain is indicated by context.

o adj[A] denotes the adjoint matrix of A and adj, [A] denotes the ij element of adj[A].
¢ A denotes the inverse of matrix A.
o AT denotes the transpose of matrix or vector A.

o I denotes the nxn identitiy matrix.

11



2. The Aircraft

This chapter describes the baseline aircraft used in this study and the development of a partially
lineanized six DOF model of this aircraft, suitable for velocity vector roll analysis and design. The chapter

concludes with an open loop simulation of the six DOF model, for model validation purposes.

2.1. Airframe

The aircraft to be used for this study is the NASA F-18 High Angle of Attack Research Vehicle
(HARYV). The HARYV is a pre-production, single-seat F/A-18 aircrafi, on loan to NASA from the US Navy.
The HARV's a twin engines have been fitted with two-dimensional thrust vectoring nozzles to provide
pitch and yaw moments at high AOA, low dynamic pressure F.C.s where the conventional aerodynamic
control effectiveness is inadequate. The basic F-18 system, Fig. 4, has been extensively tested and was
shown to be both robust and controllable in the high AOA regime, making the F-18 HARYV an excellent

platform for high AOA research [21].

Figure 4. F-18 Aircraft
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2.2, Nonlinear Model
A nonlinear model of the HARYV aircraft is contained in the F-18 HARV Batch Simulation,
provided by NASA. This model furnishes the nondimensional stability and control derivatives, and other

pertinent aircraft data, to be used in the aircraft models developed in this work.

2.3. Six DOF Model Development
This section presents the development of a general partially linearized six degree of freedom (DOF)

aircraft model, suitable for velocity vector roll design and analysis and tailored to the control inputs of the

HARYV aircraft.

2.3.1. General Model. To properly account for the nonlinearities present in the system during a
velocity vector roll at high AOAs, the system model must be derived from the nine nonlinear body-axes

aircraft state equations of motion:

Force Equations
U=VR-WQ+tY F, M
V=WP-UR+LiY F, @
W=UQ-VP+LY F, ©)]
Moment Equations
p=tz(, —1,+1,)PQ+-1—(1y1, -1} -1;)QR+1’-2L+112N @
D D D D
Q=%PR+II—;’-(R2 -P2)+%2M &)
R= (12 =11, + 1) PO+ 21, ~ 1, - 1)oR+ 123 L+ o5 v ©
D D D D
Kinematic Equations
6 = Qcosg— Rsing ™
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¢ = P+Qsingtan@ + Rcos@tan ®

sin¢g +R cos¢
cos@ cos@

V=0 ©®)

where the defirition D= 1,1, - I, is used. Both the force and moment state equations have aerodynamic
and control input contributions which are accounted for with aerodynamic and control derivatives. Each
denvative represents the change 1n that particular force or moment due to small aerodynamic or control
surface perturbations. These derivatives can be estimated theoretically or measured in wind tunnel tests,

and are symbolically represented in the following force and moment summation equations:

S qu( b, P+ b_C,R+C,B+C, 5,+C, 5) (10)
ZM=¢7$L<(C,0!+ =C, 0+ UC a+C,'5,) (11)
YN= qu( —=C, P+—= %c R+C,B+C, 8, +C, 5) (12)
Y F, = mgs1n¢cosw+qs( b =C, P+-b—C ,R+C, B+C, 8) 13)
ZF,=mg(1-cos¢cosw)+qs(c o+ — _c Q+ _c 0 +C, 8) (14)

These force and moment equations summation can be inserted into the nonlinear force and moment state
equations (1-6). Note that constant velocity and thrust have been assumed in this study, so the x-force
summation equation and the thrust control inputs in Egs. (11-14) are not required in this development.

Because QFT is a linear design technique, the state equations must be linearized for particular
trimmed F.C.s. Linearization is typically based on the small pertubation theory, which assumes that only
small excursions in the state variables occur about a given trim condition [10]). However, the velocity
vector roll is a large amplitude maneuver consisting of a high roll rate and large excursion in Euler angles.
Therefore, these state responses cannot be treated as small excursions, and the linearization technique must
be modified. This modification is rather simple. All states in the system other than the roll rate and the

Euler angles can still be represented as perturbation quantities (denoted by lower-case variables), and the
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squares and products of these states can be neglected as is typically done in small disturbance theory
linearization. The roll rate, P, and Euler angles, ¢, 8, and y, cannot be considered small, however, so any
second order terms nvolving them must remain. Additionally, the trigonometric terms in the kinematic
equations will not undergo a Taylor approximation as is done in the small disturbance theory linearization,

since the Euler angles are not considered small perturbations. The resulting equations are:

P= 4sb’ (IC +1.C )P+—(1 I+I)Pq+-—Sb—-(IC 1.C, )r
2DU "

2DU
qu qSb qS5b
LG, + le,,[3+—1C +1.C 6, + LG, +1.C, )5
16,010,042 010, 410, .+ 22016, 410,05, as
¢ = P+gsingtan@ +rcos¢ tand (16)
é=1 -1, Pr+ 2 Ps q;S;C(C a+2L.7C q+ _C a+C“5,) an
r=—(I ~I1+1 )Pq+q—Sb—(1 c, +1.C, )P+ gy’ (1 C, +1.C, )r
2DU " 20U "
ash qsb qSb
+—|1I C B+ 1 C +I1C )6, + I C +1.C, 15,
D ( ) ( l‘) D ( l,) (18)
. as c c . .
w=Ug-Pv+g(l-cosgcosy)+—{ C, a+—=C, g+—=C, &+C, 0, (19)
m\ * 22U *° 2 * se
gsS( b <
v=Pw- Ur+gsm¢cosw+—— UC"P _C,.'R+Cy‘ﬁ+Cy"., (20)
é=qcos¢—rsin¢ (21)
V=g sm¢+rcos¢ 22)
cosG cos6

As can be seen from the equations. this linearization technique allows for high roll rates and large Euler
angle excursions, but produces a set of equations which is only partially linearized; that is, the equations
still contain some nonlinear terms (Pr, Pq, Pa, Pf3, and P?). These terms are the nonlinearities that must be

attacked with the QFT design technique.
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Because ¢ and r are to be kept small throughout the velocity vector roll, the assumption is made that

@ =y =0. Inaddition, the AOA and sideslip angles may be approximated as:

tan| — E—.: 23
a= arcn( ) T (23)
v
= =|E= 24
B= arcmr{UJ i (24)
Thus, Egs (16), (19), and (20) are reduced to:
p=P (25)
b =q-pp+ &1 (c a+—C, A= _c a+C, 5) (26)
7 mU 22U Bl

: Lgsing qS(b b )
=P ~“=|==C, P+—=C, R+C, B+C, § 27
p=bo-r+ g T\ S P+Go 0 @7

2.3.2. Adircraft Control Inputs. Equations (15), (25), (17), (18), (26), and (27) represent the
complete six DOF dynamical system with three generalized control effectors, ailerons, elevators and a
rudder. However, the control effectors for the actual F-18 HARYV aircraft are grouped into twelve control

effector groups:

e pitch and roll aileron (6,,,6,,)

e pitch and roll elevator (&,,,6,,)

e pitch and yaw rudder (§,,,5,,)

*  pitch and roll leading edge flap (5,,;,,6 ;)
e pitch and roll trailing edge flap {5, ,6,;)

e pitch and yaw thrust vectoring (6, ,6 13;)

To trim the HARYV a: thirty degrees AOA, the leading edge flaps are fully extended, as shown in Appendix
A. Therefore, the leading edge flaps are not used as a control effector in this study. To further limit the

complexity of the design, the trailing edge flap, pitch aileron, and pitch rudder groups are not used.

16



Therefore, the three general control effectors appearing in the six DOF equations are replaced with the true

control effectors as follows:

8¢ =8‘p+6n-‘, (28)
81‘ =5ﬂ' +6" (29)

with each control effector group having its own stability derivative.

2.3.3. Transformation to Stability Axes. The stability derivative, moment of inertia, mass, dynamic
pressure, wing area, and velocity terms appearing in the six DOF equations are readily obtained from the
nonlinear F-18 HARYV Batch Simulation for a particular trimmed F.C., as is described later. With the
exception of the lift and drag stability derivatives and the velocity which are referenced to the stability
axes, this simulation cutput is referenced to the body axes frame, and is therefore compatible with the terms
in the six DOF equations above. However, it is mere convenient to use the stability axes frame of
reference to describe a velocity vector roll. Using fixed body axes, the velocity vector roll rate is described

by:
Q= Pcosa + Rsina (€2))

At zero degrees AOA, the body x-axes and the aircraft's velocity vector are aligned, and the velocity vector
roll consists entirely of body axis roll rate P. However, as the AOA increases, the velocity vector roll
includes an increasing body axis yaw rate component, R. At ninety degrees AOA, the velocity vector roll
consists entirely of body axis yaw. Equation (31) is therefore rather difficult to command and measure
with a linear control system. However, in the stability axes frame of reference, the stability x-axis is
always aligned with the aircraft's velocity vector, and the ideal velocity vector roll then consists entirely of
roll rate P with no yaw rate component. This simplifies the analysis, design, and simulation processes

since the desired output is an actual state of the system and not a function of several states. Therefore a

rotation equal to the AOA about the aircraft's y-axis is required to transform the terms of the six DOF




equations of motion into the stability axes frame of reference. This is accomplished by appropriately

transforming each stability derivative and the moments and products of inertia. The stability derivative

transformation yields:

G =C cosza—(c,'j +C,',")sinacosa+c,‘," sin’
Ci=C; cosza—(Cf’ —C,‘:)sinacosa—C,‘," sin’ o
G, =C, cosax~C, sina

G, = C,’:' cosa+C,‘,’" sinat

]
i,

C, =C; cosa+C’ sina
by by by
2]
Tim,

=C! cosa+C’ sina
o {7
b b o
= C,‘m coso + C,,‘m sina (32)

C; =C, cos’ a—(C,‘,” -C )sinacosa -C; sina
C;, =C} cos® a+(C} +C!, )sinacosar+Cp sinax
C;, =C,, cosa+C; sinax

G, =C,_cosa~C, sina

G, =G, cosa-C; sina

C: =C’ cosa-C; sina
by by

G, = c:‘m cosa—C,':m sina (33)

C:'l = C:a

C;l = C,:l

c. =cC

c =C (34)
iny Jn,

b
C;! - Cyp
b
C;c, P
] b
Cn, Yip
s _ b
)’5,, - )'57
s b
Yo, Yry, (35)
C, =-C,
_ b
C:l __CLI
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c, =-C,
‘e ‘y
C,
s

--ct_ (36)

m

where the b and s superscripts denotes body and stability axis derivatives, respectively, and the AOA is the

trim AOA (30 degrees). Similarly, the inertia is transformed with the trim AQA [22]:

2 1 cnl 1 .
I, Los_ a Jsna .- §’_n_2_q I,
2t =|sinfa | cos’a | sin2a {1, 37
______ J SR L oled
1o} s 1sin2a | ~1sin2a | cos2a ||1, sody

Note that all stability derivatives and moments of inertia from this point forward are in reference to the
stability axes system, unless explicitly stated otherwise.

It is apparent that the six DOF equations of motion are quickly becoming very complex. Two steps
are taken to alleviate this situation. First, the transformation of the stability derivatives and moments of
inertia are performed before they are integrated into the equations of motion, and second, a set of
consolidated stability derivatives which combine like terms in the equations of motion are defined. For
example, in Eq. (15) the entire quantity by which the state P is multiplied is defined as the consolidated

stability derivative CMP’ . Based on this concept, the consolidated stability derivatives are defined as:

_sz
q El—_(IIC,' +IuC‘)
* 2DU » »
I b
C =={.-I +1)-
1o D( x ) z ¢
gsb’

- \4

C, =—(C +1,C")
2D . ,

Cl Eg:S:E(IJC’I" +I.uc: )
' D ’ )

GSb
¢, =2=2uc +1.C)
o D b b
qsh . s
G EL(IzCI +1,C )
b D s, b

gsSb s
Cl Eg_D—(IxCI:, +InCn‘ )

s%(gc,‘m +1,C. ) (38)
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42)

The resulting non-dimensionalized six DOF stability-axes equations of motion, suitable for velocity

vector roll analysis, is now written in a final form using the consolidated stability derivatives:

P=C P+C Pqg+C,r+C, B+C, 5,+C, 5, +C, 8,+C, &n,

¢=P

§=C,, Pr-C,, P? +C,a+C, q+C,a+C, 5,+C, 0On,

F=C, Pg+C, P+ C,,,r+C,,‘/3+C,,‘.8” +C,,‘.6, +C,,‘76,y *Cn.,,,5m
a=q- Pﬂ+(

B= Pa—r—(

U

2.4. Control Effector Sign Convention

The control effector group sign convention used in the HARV simulation is shown in Fig. 5,

b .
2%2 )(1 ~cos¢)+C, g+C, &+C, a+C, §,+C, 6n,

8.?2 )sin¢+ C, P+C,r+C p+C, 6,+C, 6,+ qu 6, + C,‘m O,

Alleron
Elevator
Pitch Thrust Vectoring

forward

Rudder
Yaw Thrust Vectoring

|

forward
(from above) Q

Figure 5. Control Effector Sign Convention
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with the actuator deflection angle limits:

Ailerons: +42°=>-25° (+0.73304 = -0.43633 rad)

Elevators: +105°= —-24° (+0.18326=> ~ 041888 rad)

Rudders: £30° (3052360 rad)

Pitch Thrust Vectoring: +16°= —20° (+0.27925=> -0.34907 rad)

Pitch Thrust Vectoring: £10° (30.17453 rad)
Actuator rate limits are not included in this work. The control effector groups defined in the state
equations represent control surface pairs, with the sign convention shown in Table 1. Although each
control actuator has the deflection limits presented above, the control effector groups are internally scaled
such that a maximum control effector command for a differential control drives one control actuator to its
maximum positive position, and the other control actuator to its maximum negative position. For instance,
the maximum roll aileron command of 42 degrees drives the left aileron to the -25 degree position and the
right aileron to the 42 degree position.

Table 1. Control Input Sign Convention

Left Effector | Right Effector
Roll Aileron + -
Roll Elevator + -
Pitch Elevator + +
Pitch Thrust Vectoring_ + +
Yaw Thrust Vectoring + +
Yaw Rudder + +

2.5. Flight Conditions

In this study, the variation in the QFT plant parameters has two sources, the nonlinearities in the
EOM and the change in aircraft characteristics over a range of F.C.s. While the use of QFT to account for
the system nonlinearities is the primary focus of this study, the ability to design a single controller for a
range of F.C.s is equally important. Having said this, it is important to note that the portion of the flight

envelope in which high AOA flight and velocity vector rolls are feasible is very limited.
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A range of F.C.s is typically defined by a range of speeds and altitudes. Regardless of the linear
design technique used, specific points (specified by a single speed and a single altitude) within this range of
F.C.s are selected as design points, and a linear model is extracted at each of these design points, as
discussed in Chapter 1. The extracted linear model represents the trimmed aircraft at a particular speed and
altitude; that is, the states of the aircraft are constant. Therefore, specifying a unique speed and altitude
defines a unique AOA.

In this study, the design is limited to one AOA, viz., thirty degrees. As a result, only the range of
altitudes or speeds may be specified, and the range of F.C.s becomes somewhat more limited. As can be
seen in Fig. 1, the largest range of F.C.s in the high AOA region of the flight envelope occurs with changes
ip aititude. Therefore, variations in altitude, rather than in speed, define the range of F.C.s used in this
study, allowing the robustness of QFT to be more fully exploited.

The altitudes chosen for this study are presented in Table 2, along with the aircraft's corresponding
speed, thrust in the body x-axis, and throttle positions. This data 1s obtained from the F-18 HARV Batch
Simulation. Flight conditions corresponding to altitudes equal to or greater than 25,000 feet cannot be
attained due to a lack of engine power. The first three 1 .C.s, in the high AOA region of the flight
envelope, are used in for the QFT design. The fourth F.C. s used only for model validation, as discussed
in the next section.

Table 2. The Aircraft Flight Conditions

| Flight Condition 1 2 3 4
Altitude (feet) 10,000 15,000 20,000 20,000
AOA (deg) 30 30 30 S
Speed (feet/sec) 218.609 236.485 256.8 553.012
Thrust, x-axis (Ibf) 14757.4 14795.9 14835.4 3529.2
Right Throttle (%) 64.3 72.4 87.0 39.2
Left Throttle (%) 64.3 72.4 87.0 39.2

2.6. Six DOF Model Validation
The development of the final six DOF equations of motion involved a significant amount of

manipulation, and therefore have a high probability of error. Before continuing with the design phase, it is
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imperative that this six DOF system be validated. Not only does this save valuable time, but it also
provides an opportunity to explore properties of the F-18 HARV which may compliment or detract from
the design process to be undertaken. To perform this investigation, the six DOF system can be modeled in
a simulation environment such as MATLAB's Simulink, and subjected to individual control inputs. A
detailed study of the stability and control derivatives and of the aircraft's response to the control inputs
should be sufficient to identify short-comings in the model development.

A top-level block diagram of the nonlinear six DOF system appears n Fig. 6. Since this is a
nonlinear model (due to the Pr, Pq, Po, Pf3, and P? terms), the differential state equations , Eqs. (43-48),

must be implemented directly. Each state equation block in Fig. 6 contains continuous-time blocks
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Figure 6. Six DOF Model, Top Level Block Diagram




representing the dynamics of that state and input blocks for the control inputs which affect that state. Asan
example, Fig. 7 shows the internal structure of the roll rate state block. Note that the control inputs

(8, =dar, etc.) have been implemented so that each input can be applied independently of or in
combination with the others, allowing more freedom in the choice of validation simulations.

The stability derivatives shown in Fig. 7, and present in each of the state equation blocks, are the
consolidated stability derivatives described earlier. These may be formed from the nondimensional
stability derivatives and moments of inertia provided by the F-18 HARV Batch Simulation using Egs. (32-
42). Because the simulation's output is a Matrix, fsave file, this transformation is accomplished with the
Matrix, script file, coef.m, listed in Appendix A. The transformed stability derivatives are then entered
into MATLARB to be used in the validation simulation. The nondimensional and consolidated stability
derivatives for each of the four F.C.s, as well as other pertinent aircraft data, are presented in Appendix A.

The outputs of the six DOF simulation model are the aircraft states, P, ¢, g, , o, and B, which are
defined in the stability axes. To facilitate comparison with similar aircraft responses and with expected

responses based on a knowledge of flight dynamics, the first aircraft model to be simulated should be
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Figure 7. Six DOF Model, P State Block Diagram
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trimmed at a relatively low AOA so that the stability and body axes are nearly aligned. Flight condition 4,
in Table 2, is the trimmed condition used for this purpose.

With the consolidated stability derivatives representing F.C. 4 loaded into MATLAB, the simulation
is subjected to maximum deflections 1n each of the individual control effector inputs. The aircraft state
responses to each of these inputs are shown in Figs. 57-62 in Appendix B.

These plots show that the aircraft responds to all control inputs as expected, except for the
perturbation in AOA, given a roll aileron command (Fig. 57). The pitch rate g is an increasingly positive
quantity, so the AOA is also expected to increase. b wever, Fig. 57 shows that the AOA gradually
decreases. An analysis of Eq. (47) provides an explanation for this phenomenon. While the AOA is
directly tied to the pitch rate through the first term of the equation, high roll rates can actually cause the
second term involving the sideslip angle to become dominant. Because of the adverse yaw effect, the
sideslip angle due to an aileron roll command is positive, resulting in a decreasing AOA during high roll
rates.

The consequences of this characteristic of high roll rates is rather significant. First, a decrease in
AOA during a roll maneuver means that the aircraft is being unloaded during the maneuver. Second,
proper control of the a and f states through a velocity vector roll is imperative! Equations (47) and (48) are
closely coupled through the Paand P terms when the roll rate is relatively high, so the excursions in
AOA and sideslip angle must be kept very small.

While the simulations of the six DOF aircraft model trimmed at a low AOA demonstrate the validity
of the model, simulations of the aircraft models trimmed at thirty degrees AOA show the high AOA
characteristics of the aircraft. Representative simulations for F.C. 1 of Table 2, Figs. 63-68, show that the
basic response characteristics to the control inputs are similar, but much less in magnitude. This reduction
in control effectiveness is due to the reduction in dynamic pressure and the changes in airflow at higher
AOAs; the aerodynamic control surfaces are simply not as effective at high AOAs. In addition, the

controls which primarily affect the roll channel at low AOAs affect both the stability axes roll and yaw
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channels at higher AOAs. This coupling necessitates creative control blending techniques to produce the
desired roll characteristics at high AOAs.

One suspicious response characteristic emerging from the initial thirty-degre: AOA simulations is
the lack of sideslip produced by yaw thrust vectoring, compared to that produced by the yaw rudder input.
The spee of the aircraft trimmed at low AOASs results in a relatively high dynamic pressure (140 slug
ftisec?) so the effectiveness of the aerodynamic controls surfaces may be much greater than the
effzctiveness of thrust vectoring in these F.C.s. However, the speed of the aircraft trimmed at thirty
degrees AOA results in a dynamic pressure of only 42 slug ft/sec? so the effectiveness of yaw thrust
vectoring should be approaching, if not exceeding, that of the rudder. An analysis of the yaw thrust
vectoring and rudder control derivatives shows that the rudder is again over three times as effective (at
body axes yaw) as the thrust vectoring. This is not consistent with the literature {21] which indicates that
yaw thrust vectoring is more effective than the rudder near this F.C. Through a discussion with NASA
HARYV program office [7], the cause of this inconsistency is easily explained. The nondimensional thrust
vectoring control derivatives that the F-18 HARV Batch Simulation prov’ tes represent the aerodynamic
effects caused by the movement of the thrust vectoring nozzle, not the moments caused by the vectored
thrust. Therefore, the non-dimensional control derivatives representing the thrust vectoring effectiveness in
pitch and yaw must be calculated from a knowledge of the system at the trim F.C,

While they do not include the negligible aerodynamic contributions descrnibed above, the following

equations represent th- ~ ce and moment effectiveness of the vectored thrust;

_ =TI, siny _ Tsiny

C, = 49
w TGSy T sy @
~T1,siny Tsiny
c, =——- =— 50
Miny qséy iy qsy ( )
where
[ =1973ft
S = 400 fi?
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b=374 f

c=11523ft

(1

and the other variables change with F.C. as shown in Table 3. The thrust usea in these calculations is the

thrust in the x-axis of the body axes system, and the resulting control derivatives are therefore also in the

body axes system, as were the original.

These new control derivatives can be transformed to the stability axes system as described earlier,

with the exception of the control derivative representing the change in z-force due to pitch thrust vectoring.

The original control derivative obtained from the F-18 HARYV Simulation represented a change in lift due

to pitch thrust vectoring, and lift was already defined in the stability axes so no transformation was

required. Now, however, this control derivative represents the change in body axes z-force, and must

therefore be transformed to the stability axes system using:

C

25

=C?  cosa
m im

(2

After this transformation, and the appropriate nondimensionalization with respect to time, these control

derivatives are placed in the six DOF model. Simulation of this model, see e.g. Fig. 67, shows that the yaw

thrust vectoring effectiveness is greater than the yaw rudder effectiveness, as expected, and therefore the

six DOF model validation is complete.

Table 3. Thrust Vectoring Control Derivatives, Body Axes

Altitude (f)) | Thrust (bf) | 7 (1b/R?) Coiny Crim M .
10,000 147570 | 42000 | -0.46340002 | 0.87841667 | -1.5040494 | 0.87841667
15,000 147959 | 41900 | -0.46571782 | 0.88281026 | -1.5115722 | 0.88281026
20,000 14,8354 | 41.856 | -0.46745201 | 0.88609757 | -1.5172008 | 0.88609757
25,000 14,1244 | 41.800 | -0.44564519 | 0.84476077 | -1.4464228 | 0.84476077
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3. QFT Plant

This chapter describes the developmet of a three DOF QFT plant model from the partially
linearized six DOF model. Included in this development is an approach to representing the system
nonlinearities with linear QFT models, the incorporation of actuator dynamics into these models, and an
approach to a weighting matrix strategy. The chapter concludes with an open-loop simulation of the QFT

model, ensuring its validity.

3.1. Three DOF QFT Plant

As previously mentioned, minimizing the pitch and yaw rates in the transitional region allows the
corresponding "slower" states (AOA and sideslip) to become negligibly small, and allows these slower
states to be removed from the six DOF model. The resulting three DOF system of the "fast" states of the

aircraft in the transition region, based on the assumption that o= f= 0 and ¢ = 0 or m, is:

P=C P+C _Pg+C,r+C, §,+C, 5,+C, 5, +C, Om, (53)
. 2

§=C, Pr-C, P +C, a+C,, 8,+C, &n, (54)
F=C, Pg+C P+C r+C 6,+C, 6,+C, 6, +C, 65 (55)

with the initial or final conditions (as indicated in Figure 3):

Initiate Roll Arrest Roll
P(0)=0,P(t)=F, or P(0)=F ,P(t)=0 (56)
9(0)=0,9(r)=¢, or ¢(0)=g,,q(1)=0 (57
r(0=0,r(t)=r, or r(0)=r,,r(t)=0 (58)

The two transition regions are treated independently so that the final conditions of states g and » from roll
initiation may be slightly different from the initial conditions of these states in the roll arresting transition
region. This provides more flexibility to the optimal control solution in the free stream region by allowing

it to end with different conditions than 1t started with. This may be desirable, or necessary, depending on
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the characteristics of the roll arresting transition region. Regardless, these states must still be relatively
close to zero for the transitional region model to be valid.

The three DOF equaticns of motion presented above are nonlinear because of the roll rate terms.
One approach to removing this nonlinearity is to introduce a roll rate parameter P, which ranges from
zero up to the maximum desired roll rate P. The roll rate parameter then becomes a bounded structured
uncertainty in the three DOF linear QFT model:

() =Ax(t)+Bu(?)

¥(t) =Cx() + Du(t) (59

where

x(t) is the state vector (3x1):

P(t)| roll rate (rad / sec)
x(t)=1 q(t) | pitchrate (rad / sec) (60)
r(t) | yaw rate (rad/sec)

u(¢) is the input or forcing function vector (6x1):

[ é,(1) 1 differential (roll) ailerons (rad)
é,.(t) | differential (roll) elevators (rad)
5,,.(t) pitch elevators (rad)

O (1) pitch thrust vectoring (rad)

O (1) yaw thrust vectoring (rad)

i 6,1 | yaw rudder (rad)

u(t) = (61)

y(2) is the output vector (3x1)

P(t)| roll rate (rad / sec)
y(t)=| q(t) | pitchrate (rad/sec) (62)
r(t) | yaw rate (rad/sec)




A is the plant dynamics matrix of constant coefficients (3x3)

Cl' Cl" P param Cl,
A=|~Cp Proun  Cn Co Pruven (63)
Cn, Cn" P param Cn

B is the input or forcing function matrix of constant coefficients (3x6)

CIJ, C’l. 0 0 C"m Cl‘v

B=0 0 C,_ C, 0 0 (64)
G, G. 0 0 G G,

C is the output matrix of constant coefficients (3x3), and is equal to the identity matrix

Cc=1,, (65)

D is the input or forcing function feedforward matrix of constant coefficients (3x6)
D=0, (66)

Based on a projected maximum roll rate of 24 deg/sec, reasonable dimensional values for the roll rate
parameter appearing in A are 0, 8, 16 and 24 deg/sec yielding four plant cases for each F.C. Note that this
roll rate parameter must also be nondimensionalized to rad/sec before being used in the equations.
However, for ease of understanding, the dimensional values of 0, 8, 16, and 24 are used in this document.
The twelve plant cases used in this study are listed at the end of Appendix A.

The QFT plant matrix P, (s) of system transfer functions, to be loaded (hence the subscript L) into
the QFT design package is derived from Eq. (59) using Laplace transform notation. Assuming zero imtial

conditions, with D = 0:

sX(s) = AX(s) +BU(s) (67
(sI-A)X(s) =BU(s) (68)
X(s) =(sI-A) "' BU(s) (69)
Y(s) = C(sI-A)"'BU(s) (70)
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Y(s) = P (s)U(s) an

P, (s)=C(s1-A)"B (72)
and dimensionally, P, for the HARV is:

-1
PLie(9) = Cm[(-"l -A) ]m By

The individual elements of P, are all functions of the Laplace variable s and relate each control input in the

state equations to each system output. P, (s) is symbolically represented as:

|
|
The plant matrix is then:

[(Ps)  P)  Ps)  PGs) Pis)  Ps)]
54,(3) 5”(5) 6,,(3) 817'p(s) aTVy(S) 6,}.(3)
P, (s) = q(s) q(s) q(s) q(s) q(s) g(s) (73)

aar (S) 8" (S) 6¢p (S) 61'Vp (S) 6 Ty (S) ary(s)

r(s) r(s) r(s) r(s) r(s) r(s)
_6ar (S\ 5¢r (S) 5¢p (S) an’p(s) 5Wy(s) 6ry (S) R

3.2. Actuator Dynamics

Although the plant matrix P, (s) accurately models the aircraft state dynamics, it does not account
for actuator dynamics inherent in each control effector of the aircraft. These actuator dynamics can have a
significant impact on the stability of an aircraft, and therefore cannot be ignored. The actuator dynamics
are approximated by second and fourth-order transfer functions [1], as shown in Table 4, and placed into an

Ixl actuator matrix T, (s):

T, 0 0 0 0 O
0T 0 0 0 O
(o) 0 0T 0 0 0 )
AcT 0 0 0 Ty O O
0 0 0 0 Ty O
[0 0 0 0 0 T]
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Table 4. HARYV control effector actuator dynamics

Effector Transfer Function
. 5625
T (5) = ——o
Aileron ) s* +8855+5625

2137.718(s” +1127445+ 6872.41)

Elevator T.(9)=
s* +154.1025° + 1612178345 +495588.89s +14691275.7264
400
A/ T -
Thrust Vector v($) T 42657300
5184
T(s) = 2™
Rudder )= 993645184

The system mx! plant matrix P(s) which includes the actuator dynamics can now be defined as:

Pt = P ()t Tacr (St (75)

3.3. Effective Plant P(s)

Although a linear plant P(s) has been identified, this system still cannot be used directly in the QFT
design process. The QFT design methodology requires a square mxm plant. In other words, the system
must have the same number of inputs as outputs. QFT requires a square plant because the QFT design
equations require the inversion of P(s), the system plant. For systems with more inputs than outputs, like
the HARV model developed here , an effective system must be formed by means of a weighting matrix. A
weighting matrix takes m desired input commands and appropriately "splits” them into the / actual
command inputs of the plant. For the HARV, the Ixm weighting matrix W(s) must transform three
command inputs (since there are three states) into the six HARV control inputs used in the design.

Recall that the six DOF equations of motion, as originally stated, contained three control inputs,
which are redefined as the six actual control inputs in Eqs. (28) to (30). The three original control inputs
are ideal for use in the weighting matrix since they represent the primary controis which produce moments
about the three general axes of interest. Therefore, the weighting matrix W(s) relates these three control
inputs to the actual six control inputs of the plant, as shown in Figure 8. This is represented symbclicaliy

as:
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Figure 8. Effective plant (P), Block Diagram

P, (5) = Pye(s) - Wess(s) (76)

The effective plant is now square, with the generalized three-axis rate command inputs and the three-axes

output states P, g, and r.

3.4. Weighting Matrix W(s)

The formation of an effective plant matrix with a weighting matrix is a simple concept. However,
the choice of the weighting matrix is not a trivial matter; the proper choice of a weighting matrix is very
critical to the success of the overall design. A successful weighting matrix design can make the
compensator design a much simpler task by reducing the cross-coupling effects of the control inputs. The
opposite is also true, however. A poor choice of the weighting matrix can actually r ke the system
impossible to control. Unfortunately there is no easy method of designing the weighting matrix.
Previously designed weighting matrices generally offer a good starting point, but no weighting matrices
oriented towards velocity vector rolls at high AOAs have been found in the literature. Therefore the
weighting matnx must be based on insight into this particular controls problem, the nature of the plant, and
the MIMO QFT design methodology.

A first attempt at a successful weighting matrix design is to borrow the general flight control
concept of an aileron-rudder interconnect and use it to account for the cross-coupling effects found at high

AOAs. For instance, a roll command would not only command roll, but also yaw to remove the adverse
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yaw preduced by the aileron deflections. Looking first at the system with three generalized control
effectors, as in Eq's. (15), (25), (17), (18), (26), and (27), the weighting matrix is designed to weight the
cross-coupled control inputs based on the ratio of the appropriate control derivatives. Each of these control
derivatives indicates the effectiveness of that control effector in producing a particular force or moment.
For example, given a §, command, the three corresponding weighting matrix outputs (denoted with a "hat")

can be defined as:

5,=6,
. C,
6r = _il-aa
c,
5§ =0 an

-

Here, the aileron commands not only the differential ailerons, but also the rudder based on the ratio ¢ ¥
ailerons' (adverse) yaw effectiveness to the rudders' yaw effectiveness. Similarly, a yaw command
generates an aileron command based on the rat'o of the rudder and aileron roll effectiveness derivatives. A
pitch command produces no aileron or rudder commands since the longitudinal channel is still ideally
uncoupled from the lateral channels. The resulting weighting matrix scheme, for the three general control

inputs, is therefore defined as:

i e
1 Vo0 ' —=
- 1 | C
[8,] |-emmdemmnntoe |,
S.0=| 0 1 1 1 0 |5, (78)
S |
I
C"»E i

However, as noted earlier, the weighting matrix for this design must have three control inputs and six
control outputs. Therefore a second weighting matrix is defined to direct the three weighted control

outputs of the first weighting matrix into the actual control groups available on the aircraft. This direct
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connection must contain scale factors to account for dissimilar maximum control deflections within the
control effectors in each group. For instance, a maximum aileron command should command the roll
ailerons to forty-two degrees, but the roll elevators only to thirty degrees. Scaling is achieved by
multiplying the input command by the ratio of the maximum actuator limits to the maximum allowed input

command. This arrangement is described by the equation:

ama 1
20 o
L
, S :
AR
20 I Lem T .
1 e 1
8 0 P Em 0 ‘?“
¢p)= ----- :---‘-----1| ----- 5
S, ' O, | .
0 :‘mu: 0 6!
é‘m _____ :-fs_e___:-s__-
1 1 max
%) [0 {0 iz
' ) 8"
Tt
0 1 0 12
| P o™
L - PO (79)

Because the control derivatives in Eq. (77) are not directly available, these two weighting matrices must be

combined to form the single weighting matrix:
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The control derivatives in this matrix change with F.C., and must be obtained from the F-18 HARV Batch
Simulation and transformed as described earlier. The other required control effector group command limits

for the F-18 HARYV are:
05 =420, 67" =424°, 67 =430°, Sp; =10°
S =240, 5T =420°
0, =+43inches , &7 =+5Sinches , 6™ ==lunit 81

While this weighting matrix is based on sound principles, it has two primary limitations. First, it
will only work if the control derivatives in the numerator and denominator of each fraction are such that the
resulting control surface comnmand is within the allowable limits, given a maximum general control input.
If not, the general control input will command more control authority than is available. For instance, if the
thrust vectoring and the rudder are as ineffective in the yaw channel at thirty degrees AOA as the
simulation indicates, this weighting matrix will try to command more thrust vectoring and rudder than is
available to compensate for a maximum roll command. A possible solution is to scale the denominators of

the cross-coupling elements up so that the resulting commands are within the limits. Some, but not all,
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decoupling will then still be possible. Given the transformed control derivatives from the simulation and
the thrust + ectoring control derivatives in Table 3, the denominator of the W(6,1) element must be
increased by a factor of ten to prevent the rudder from saturating.

Second, since this weighting matrix contains control derivatives which vary with F.C., and the plant
cases vary with F.C., the weighting matrix must be re-evaluated each time the F.C. is changed. In a sense,
this violates the whole purpose of the QFT design, which is to design a single compensator control system
which takes into account plant variation so that gain scheduling of compensators is not required, or is
greatly reduced. By introducing a weighting matrix which changes with F.C., a control system element
which must be gain scheduled is actually being added to the system. It is hoped that the actual variation in
the weighting matrix elements over the limited flight envelope will be small enough that a constant
weighting matrix can be used in place of the scheduled matrix. The weighting matrices for the three F.C.s
considered in this thesis appear in Table 5.

Table 5. Scheduled Weighting Matrices
10,000 f 15,000 ft 20,000 ft

(02443 0 07247] [ [02443 0  07425] | [02443 0  0.7593]
01396 0  03045| | (01396 0 03123[ [ [0:396 0 03199
0 00838 0 0 0088 0 0 00838 0
0 00698 0 0 00698 0 0 00698 0
-0.0399 0 01745| [ |-00391 0 o01745| | [-00384 o 01745
[-01194 0 05236) | {-00182 0  05236) | |-01168 0  0.5236]

It is obvious from these matrices that the variations in the weighting matrix elements between F.C.s are
indeed minimal. Therefore a single constant weighting matrix is sufficient for the entire range of F.C.»,
eliminating the need for weighting matrix scheduling. For simplicity, each of the constant weighting
matrix elements is taken as the mean value of the same elements in each of the three scheduled matrices.

The resulting constant weighting matrix used in the QFT design is:
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[ 0.2443 0  0.742167]
0.1396 0 031223
0 0.0838 0
0 0.0698 0 (82)
-0.03913 ~.1745
[-0.11813 0 0.5236 |

3.5. QFT Model Validation

Before using the weighting matrix and plant models in the QFT design process, each is validated
through simulation. To validate the weighting matrix design, the constant weighting matrix, Eq. (82), is
inserted in front of the six DOF model control inputs, yielding the system in Fig, 69, Appendix B. The six
state responses to each of the three available control inputs (roll, pitch ,or yaw) are shown in Figs. 70-72,
Appendix B. Comparison of Fig. 70 and Fig. 63 shows that the introduction of the weighting matrix nearly
doubles the roll rate while almost halving the adverse yaw rate, given a roll command. Similarly, the yaw
rate response to a yaw command is nearly double for the system employing the weighting matrix.

However, the roll rate responses to the yaw command show somewhat unexpected resuits. Incorporation of
the weighting matrix yields a large positive roll rate rather than the mild negative roll rate experienced
without the weighting matrix. Unfortunately, a wegative yaw command is required to maintain a near-zero
yaw rate in the roll simulation, and the resulting roll rate will therefore be reduced slightly.

The validation of the QFT plant models may be accomplished with or without the incorporation of
the weighting matrix, since six DOF simulations for both cases are available. For purposes of this study,
the former is selected. However, if the results are significantly different than those obtained in the six DOF
simulation, an examination of the bare QFT plants is required.

The weighting matrix is incorporated into the QFT model by performing the matrix multiplication:
Bl =By Wi, (83)

The newly obtained control matrix is then placed in a Simulink state-space block, along with the A, C, and
D system matrices defined in Eqs. (63), (65), and (66) and presented in Appendix A. The resulting system

is depicted in Fig. 73, Appendix B,
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The three output state responses (P, ¢, and r) to the three available control inputs are shown in Figs.
74-77 for F.C. 1 and Pparam values of 0, 8, 16, and 24 deg/sec (note, the nondimensional values of raa/sec
are used for Pparam in the actual simulation). These results compare favorably with the state responses of
the six DOF system to the same input, Fig. 70. As expected, the pitch rate increases as the value of
Pparam is increased. Starting at a constant zero value for a Pparam value of zero, the amount of pitch rate
due to a roll command directly reflects the amount of coupling present in the system, due the nonlinearities
in the six DOF system. To show the effect of the F.C. on the state responses, simulations are performed for
F.C.s 2 and 3. The results of these simulations, Figs. 78 and 79, show that the change in altitude has very
little effect on the state response to a roll command. It is expected then, that the variation in the QFT

model parameters is rather small.
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4. QFT Theory

This chapter presents the QFT theory as it applies to this work. The discussion includes the
formation of the effective plant, the definition and modeling of performance and stability specifications, the
formation of plant templates, the definition and formation of the bounds used in the QFT design, and the
design of the cascade compensator and the prefilter. As each subject is introduced, the concept is applied
to this particular problem, up to the actual compensator and prefilter design process. It is assumed that the
reader is familiar with basic continuous system multiple-input single-output (MiSO) and multiple-input
multiple-output (MIMO) QFT design methods; for a more complete discussion of these topics, refeience
Chapter 21 of the D'Azzo and Houpis textbook [8] and the Flight Dynamics Laboratory technical report
[17]. The QFT design in this study is performed using the MIMO/QFT CAD Program developed by
Richard Sating. For ease of understanding, the notation used in this chapter corresponds to the notation

used in the software documentation [25].

4.1. Effective Plants

The QFT design methodology begins with the formation of a set of N effective plant matrices,
P, (s) where i =1, 2, ..., N, which define the characteristics of the plant over the range of plant parameter
uncertainty [see Eqs. (72), (75), and (76) in Chapter 2]. The formation of the effective plants is automated
within the CAD package, which reads the system matrices from input files, and allows for manual
definition of the weighting matrix and actuator models. The system matrices for the N = 12 plant cases
(four linearized plants at each of the three F.C.s) used in this study are presented at the end of Appendix A.
The actuator models and the constant weighting matrix are defined in Chapter 2, Table 4 and Eq. (82).
With this information, the CAD package generates the twelve effective plants listed in Appendix C. The

frequency response of these plants appears in the form of a Bode plot, Fig. 80, Appendix C.
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4.2. QFT Compensation

The goal of the QFT methodology is to design the compensator G(s) and the prefilter F(s), shown in
the MIMO QFT system block diagram of Fig. 9, which allow the closed-loop system to meet required
performance specifications based on a particular input. In this study, both the compensator and the prefilter
are diagonal; this limitation is imposed by the MIMO QFT CAD Program. The control ratio matrix

relating the closed-loop system outputs Y(s) to inputs R(s) can be formed from the block diagram.

E(s) = F(s)R(s) ~ Y(s) (84)

Y(s) = P,(s)G(s)E(s) (85)

Substituting Eq. (84) into Eq. (85) and rearranging yields:

%g—; = [I +P, (S)G(S)]'l P,(s)G(s)F(s) 36
T(s) =[1+P,(s)G(s)] ' P, ()G(s)F(s) -

[ Ps)  P(s) P ]
Pond(S)  Goma(S)  ima(s)
T(s) = g(s) g _q(s)
Prd(8)  Gena(S)  Toma(s)
r(s) r(s)  r(s)
[ Poma(S)  Gema($)  7oa($) ]

-tl 1(8)  1,(s) ’13(5’)-

=1(s) () 1;(5) (88)

[11(8)  £52(5)  155(8) ]
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Figure 9. MIMO QFT Control Structure, Block Diagram
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4.3. Response Models

The performance specifications define the bounds for the elements of the control ratio matrix given
by Eq. (88). The ideal control ratio matrix has principal diagonal elements (¢, , t,, , and ¢,;) which meet the
individual desired response characteristics and off-diagonal elements which are desired to be equal to zero.
However, the uncertainty of the plant prohibits a single response characteristic for each of the principal
diagonal elements to be met for all plant cases, and the coupled nature of the system does not allow the off-
diagonal (cross-coupling) elements of the control matrix to be zero. Therefore, an appropriate set of
response characteristics which bound the elements of the control ratio matrix is identified.

For the principal diagonal elements of the control matrix, an upper (fast) and lower (slow) response
bound is specified, and all plant cases must fall within these bounds to meet the performance specifications.
Typically, these bounds can be determined from the source of performance specifications for military
aircraft, MIL-STD-1797A [19]; however, this military specification does not apply to high AOA
maneuvering [11]. Therefore, current literature is used to determine an appropriate response characteristic.

In this study, the principal diagonal elements of the control matrix represent the roll, pitch, and yaw
angular rates, defined in the stability axes. Therefore the control ratio element of primary interest for a
velocity vector roll is the roll rate element, ¢,,(s). The bounds for this element can be derived from a paper
published by the NASA HARV Program Office [21] which discusses high AOA flight control system
development. In this paper, the authors use a maximum roll rate of 35 deg/sec at 30 degrees AQA, Mach
0.25 as the upper design limit criteria. In the simulations presented by the authors, however, a maximum
roll rate of approximately 24 deg/sec is actually achieved in the first second, with a commended roll
doublet at 35 degrees AOA. Based on this response, a desired maximum roll rate between 20 and 30
deg/sec at 30 degrees AOA is respectable for a one-second time period of the transition region of the
velocity vector roll. The exact nature of this response can be defined with physical insight into the
problem. The roll rate response of a typical fighter aircraft is overdamped, so the roll rate for this problem
is bounded by a slightly underdamped response, { = 0.9, and an overdamped response with settling times

of 1 second. Two transfer functions which represent these specifications are:
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The time and frequency response characteristics of these specifications are shown in Fig. 10. Note that Eq.
(90), the lower bound, has 2 higher order denominator than Eq. (89), the upper bound, to ensure that the
difference between these bounds continues to increase with increasing frequency.

The response characteristics of the other two principal diagonal elements are not of primary concern
in this study. Obviously, they must still be reasonable, since the flight control system will utilize these two
channels to control the aircraft. Therefore, for simplicity, the same bounds used for ¢,,(s) are used for #,,(s)
and 1,,(s).

Because the cross-coupling effects are not desired, only an upper bound defining the maximum
allowable cross-coupling response is required. In flight control systems, the allowable cross-coupling is
typically five percent of the desired response. For a 20 deg/sec roll rate, maximum cross-coupling
responses of 1 deg/sec are permitted. Given this pitch and yaw rate cross-coupling and a 1 second
transition region of the velocity vector roll, the maximum perturbation in sideslip and AOA is less than 1
deg, which fits well with the assumptions made in forming the QFT models. The upper bound on the off-

diagonal elements can therefore be represented by the five percent constant:

Tp, ()= b,,lw =005=-26dB (91)
The time and frequency response characteristics of the cross-coupling specifications are shown in Fig. 10.

4.4. Stability Specifications

In addition to meeting the desired performance specifications, the QFT compensator must provide
an acceptable stability margin. The stability margin can be specified in terms of a phase margin v, a gain
margin g, or the corresponding M, contour on the Nichols chart. If any one of the three stability
requirements are specified, the remaining two can be calculated. Typically, the phase margin angle is

specified for flight control systems:
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Figure 10. Time and Frequency Response of Principal Diagonal Tracking Bounds
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y=45° 92)

The corresponding 3.01 dB M, contour is the stability specification used directly for the QFT design

technique, placing an upper limit on the magnitude of the closed-loop frequency response.

4.5. Design Equations - MISO Equivalent Method

The MIMO design technique is not applied directly to the MIMO system in the form of Eq. (87).
Instead, the problem is decomposed into a set of m? equivalent MISO system problems to which QFT is
then applied. This decomposition transforms the difficult MIMO design problem into a set of m
straightforward MISO design problems. The sir;lplicity gained by use of this transformation is one of the
major strengths of the QFT design process. The method of decomposing the MIMO plant into a set of
MISO equivalent plants is given below without proof; for more information see [17].

The first step in the process is to form the Q matrix; this is performed in the QFT CAD package.

The mathematical basis of this operation involves the polynomial inverse of the effective plant matrix:
p={p}={1/a)} ©93)
and the inversion of the elements of P,
Q={a,}={/5} 54)

The Q matrices for this study and a Bode plot of their frequency response are presented in Appendix D.

Two conditions must be met for the application of QFT to a MiIMO system and its MISO equivalent
form. These conditions result directly from the MISO equivalent derivation. First, P! must exist. This
condition is obvious from Eq. (93) and serves to ensure controllability of P,. Second, diagonal dominance
must exist in order to apply the QFT Method 1 design technique. This condition results from a disturbance
response analysis of the MISO equivalent form. For the 3x3 case, diagonal dominance exists if:

2122203 2 [Pl +prpap| + Prapis P |+ Pispsa P |+ ol 23]
as @ = o

(95)
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If diagonal dominance does not exist, it may be possible to achieve it by reordering the designation of the
plant inputs or the plant outputs, or by changing the values in the weighting matrix. If not, the Method 2
QFT design technique may be applied to the problem. In the CAD package, the diagonal dominance
condition is checked by plotting the normalized difference between the two sides of the diagonal
dominance inequality described by Eq. (95) versus frequency for each plant case, as shown m Fig. 11. In
this representation, positive values indicate the degree by which the d:agonal dominance condition is
satisfied, and negative values indicate the degree by which the diagonal dominance condition is not
satisfied. For this study, the diagonal dominance condition is satisfied as the frequency approaches
infinity, as shown in Fig. 11.

The role of the Q matrix elements in the array of MISO equivalent plants is illustrated in Fig. 12.
The MISO loops are decoupled except through the disturbance inputs. Each MISO loop has one command
input anc nne disturbance input. The disturbance input is a function of the other controlled outputs. By the
principle of superpcsition, the MISO loop transmission consists of both a tracking and a disturbance
component. However, when using a diagonal prefilter, only the diagonal MISO loops have a transfer

function component due to tracking:

0.8 __/—"‘

0.2 }—

b 6T o1 1~ 10 100.

Figure 11. Diagonal Dominance Condition
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Figure 12. MISO Equivalents for 3x3 Effective Plant

ty=t, 1, (96)

while the off-diagonal loops, with f, =0 and i # j, have a transfer function component due to disturbance

only:

t,=t, where i j. 97

The expressions for tracking and disturbance transfer function components can be derived from the

signal flow graph of the (1, /) MISO loop and are given, respectively, by:

gl(qu), _ (L,)'
) =f"{1+g.(q,,),]‘f”[n(m,] o

(td, )1 — (dll),(qu), _ (du),(q”)l

= = 99
l+gi(qt1)l 1+(Li)1
where / is the index which specifies one of the N linear plants and where:
Ll = gl qll (1 00)

is defined as the loop transmission transfer function.
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The disturbance input, a funiction of all other controlled outputs, is represented by the equation:

t
d,=-y = (101)
ki Qi

The MISO loops, each represeniing a closed loop control ratio element of Eq. (88), are required to satisfy
the performance and stability design specifications (defined in the previous two sections) placed on the
closed loop system.

The diagonal MISO loop responses must lie within an upper and lower bound; this is expressed as:

a, S|, sb, fori=12,..,J (102)
The off-diagonal MISO loop responses must lie below an upper bound; this is expressed as:

k| sty fori=12,.,7 (103)

For each row of MISO loops the stability margin is defined by:

<M, fori=12,...J (104)

In order to design a compensator g, for the MISO loops, the specifications are translated into bounds
on the Nichols chart which must r  « “iolated by the MISO open loop transmission gg,. In order for
these bounds to take into accoun  »  w cases, a set of templates, each outlining the range of structured
plant uncertainty at a particular frequency, are used to generate the bounds. Template and bound formation

is discussed in the following sections.

4.6. Templates

A plant template outlines the range of uncertainty in the frequency domain transmission of a plant
transfer function for a specific frequency. A template for a particular frequency is formed by plotting all
plant transfer functions g, for that frequency on the Nichols chart, and connecting the points outlining the

structured uncertainty region. The 0.16 rad/sec template for the roll rate channel is shown in Fig, 13,

49



db Templates - Ch 11 - N | Plant Case 4
20
w=0 01 w=0,02 w=0 04 w=0 08
15
————
w=0.16 w=0,32 w=0,64 w=}.28
10
et —l A -t
w=2.56 w=5.12 w=10.24 w=30
5
i 1 1 1
5 10 15 20
degrees
& Templats Porats « Chanoe) |
210,12
12}
1F
oS
06
oef
02}
o3 ] 75 7 TS
Asrerone

Figure 13. Roll Rate Channel Templates

50




An interesting plant characteristic is ascertained from plant groupings in this template. The first
four plant cases represent the plant variation due to the a change in the roll rate parameter at one altitude,
10,000 feet. Similarly, the next two sets of four plant cases represent the plant variation due to the same
nonlinearity, but at the altitudes of 15,000 and 20,000 feet. Consequently, the template shows that the
greatest amount of plant variation is due to changes in altitude rather than nonlinearities present in the
velocity vector roll.

The generation of templates for all frequencies of interest gives a clear picture of the frequency
dependent nature of the plant uncertainty. So what are the frequencies of interest? This question is
answered by referring back to the performance specifications. Since the response of the closed-loop system
for all plant cases is to fall within the upper and lower tracking bounds in Fig. 10, these bounds are used to
identify the frequency range of interest. In control system design, a response lower that -12 dB is typically
considered negligible. Therefore, from Fig. 10, the high frequency cut-off point can be identified as the

frequency at which the upper tracking bound crosses the -12 dB line:

®, =10 rad/sec. (105)

The low frequency cut-off point is identified as the frequency at which the upper and lower bounds are

nearly identical. This frequency is identified from Fig. 10 as:
®, = 0.1 rad/sec (106)

Since these frequencies are based on the desired performance specifications (which are rather
arbitrarily chosen by the designer), they do not take into account the plant characteristics. Therefore, to
allow the design to take into account the slower dynamics of the aircraft in the high AOA region of the
flight envelope, the low frequency cut-off is lowered to 0.01 rad/sec (approximately one decade below the
corner frequency of the first dynamics appearing in the effective plant Bode plots, Fig. 80, Appendix C).
Additionally, the high frequency cut-off is raised to 30 rad/sec, not to account for plant dynamics, but to
aid in the design process using this particuiar CAD package. The open-loop transmission L (jw) of the

system is plotted on the Nichols chart in the compensator design process, and the frequency values chosen
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for plant template evaluation are identified on this plot. Flight performance specifications require that the
open-loop transmission has a phase margin frequency ®, less than 30 rad/sec. That is, the open-loop
transmission must be 0 dB or less at frequencies greater than 30 rad/sec. Thus, specifying a tewnplate at 30
rad/sec results in the plotting of a labeled 30 rad/sec point on the open-loop transmission plot. This point
provides a quick go/no-go condition for the @, frequency requirement during the design process.

The templates frequencies are typically chosen to be one octave apart, starting from the lowest
frequency value, to provide sufficient resolution over the frequency range of interest. Therefore the

template frequencies used in this study are:
o =0.01, 0.02, 0.04, 0.08, 0.16, 0.32, 0.64, 1.28, 2.56, 5.12, 10.24, 30 rad/sec (107)

and the corresponding templates for the roll-rate channel of this study are presented in Fig. 13. The
templates for the other two channels are very similar, and are therefore not shown.

From the templates, a nominal plant must be chosen. The nominal plant P is used to synthesize the
nominal loop transmission L, and the performance bounds, which are displayed on the Nichols in the
compensator design steps. This guarantees that if the nominal loop transmission meets or exceeds all
stability and performance bounds, all plant cases and all points within the uncert: *aty region will also meet
of exceed these bounds. The nominal plant is typically chosen to be the plant in the lower left corner of the
template with the fewest number of (preferably none) unstable poles. In this study, none of the plants have
unstable poles, and plants 1, 2, 3 and 4 are all in the bottom portion of the template at low frequencies.
Plant 4 is chosen since it has the greatest number of dynamic elements to be compensated. With this
nominal plant the stability, crcss-coupling disturbance, and tracking bounds are formed and plotted on the

Nichols chart as described in the following sections.

4.7. Bounds on Nichols Chart

4.7.1. Stability Bounds. The stability bounds constrain the maximum closed loop transmission

based on the open loop transfer function to have a bounded magnitude, as described in Eq. (104). This
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specification is met by requiring that the open-loop MISO transfer function, for all J plants, does not
violate the M, contour on the Nichols chart. This is assured by plotting a bound on the Nichols chart
which the nominal open loop plant transmission L, = g4, must not violate. Keeping the nominal open
loop plant trc asmission outside this bound ensures that no other plant in the template penetrates the M
contour for that particular frequency. Because the shape of the template plotted at each frequency is
unique, the stability bound for each frequency is also unique. Figure 14 shows the stability bounds for the

roll channel in this study.

4.7.2. Cross-Coupling Disturbance Bounds. The responses of the off-diagonal MISO loops result
from coupling and are considered undesirable components which are added to the commanded diagonal
MISO loop response. Performance specifications require that the magnitude of the transmission #, for these
off-diagonal MISO loops remain below the bounds b, where i # j, as shown in Eq. (101) and (103).
Keeping the open-loop transmission above the cross-coupling disturbance bound on the Nichols chart at
each frequencies ensures that this condition is met. The cross-coupling disturbance bounds generated for
the roll channel of this study appear in Fig. 15. These bounds are verified by hand calculations, using the

pertinent equations presented in [24].

20

Figure 14. Roll Rate Channel Stability Bounds
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Figure 15. Roll Rate Channel Cross-Coupling Disturbance Bounds

4.7.3. Tracking Bounds. Tracking bounds are used to ensure that the variation in closed-loop

frequency domain transmission ¢, does not exceed the variation &, permitted by the performance tolerances

a,and b, where:

u

(
O, —-ZOlogL

.b‘_i =20 Iog(b") -20 log(all)
a

(108)

Since the closed-loop transmission consists of two parts, as described in Eq. (96), and the tracking bounds

are used only for the tracking portion of the transmission, the tracking bounds st be slightly more

restrictive than if no cross-coupling disturbance is present. These more restrictive tracking bounds are
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called allocated tracking bounds in the CAD package. A more detailed explanation, and a method of
formulating these bounds, can be found in [24]. Figure 16 shows the allocated tracking bounds for the roll-

rate channel in this study.

4.7.4. Composite Bounds. To reduce the number of bounds plotted on the Nichols chart while
designing the compensator, the CAD package allows the formation of composite bounds. A composite
bound is simply the most restrictive portion of each of the three bounds for a given frequency. Only this
composite bound is plotted, reducing the clutter on the screen. The composite bounds are used in the

design process, and may therefore be seen in the design chapter.
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4.8. Loop Shaping

The interactive design of each compensator element, g, is performed graphically by plotting the
nominal open-loop transmission L, = gg,,, on the Nichols chart, along with the aforementione. composite
bounds. At the onset of the design, g, is a unity gain element and the open-loop transmission is therefore
equivalent to the expression L, = g,,.. Starting with this open-loop transmission ensures that one obtains a
minimum order compensator element. The interactive design of the compensator element g, then involves
"building up" the compensator element transfer function from its unity value by inserting poles and zeros
and by adjusting the gain of the element until a desirable loop shape is obtained on the Nichols chart.

In general, the less bandwidth used to do a particular control job, the more optimal it is. For the
QFT problem, this translates to synthesizing L, such that 1t exactly meets every composite boundary at the
respective bound frequency, and remains just outside the phase margin angle boundary on the Nichols
chart. The tradeoff for optimality is complexity of compensation; more poles and zeros are required to
closely meet the optimum loop transmission. For implement...icn, especially in a digital system, it is
necessary to keep the magnitude of the poles and zeros to a minimum. While digital implementation
requirements are not specifically addressed in this study, this guideline are followed to maintain the
reasonableness of the design. A successful compensator is achieved when the open-loop transmission

meets all composite bounds and the 20 rad/sec phase margin frequency requirement.

4.9. Prefilter Synthesis
A compensator satisfying all bounds on the Nichols chart guarantees that the range of variation in

the closed loop transmission ¢, is acceptable for the corresponding MISO loop, that is:

At, <6, (109)
However, the compensator design does not guarantee that this transmission lies entirely within desired
tracking bounds a, and b,. Therefore, a prefilter is interactively designed in the CAD package for each

MISO loop such that the tracking bounds are satisfied for all plant cases, as explained in detail in [24].

This prefilter synthesis completes the design phase for each MISO loop.
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5. QFT Design

This chapter presents the MIMO QFT compensator and prefilter design technique, as applied to this
study. The design process is explained in detail for the channel of primary interest, the roil rate channel.
Interesting highlights of the pitch and yaw rate channel designs are then presented. The chapter concludes

with a summary of the compensator and prefilter designs for all three channels.

5.1. Design Overview

The closed-loop MIMO system resulting from the MISO equivalent system designs is robust, and
relatively simple to achieve. Using the Method 1 QFT design technique, each of the MISO equivalent
loops is designed independently of the others; the order of design is not important, and no iteration between
the loops is required. However, there is generally correlation between the MISO equivalent loops which
may, in some cases, be used to further optimize the loop transmissions. The disturbance inputs in the
design equations for each MISO loop utilize the worst case cross-coupling disturbances that can be
produced by the other loops, resulting in some inherent overdesign. After the compensator and prefilter for
a particular loop have been designed, however, the cross-coupling effects of that loop are known, and this
information may be used to reduce the overdesign in the other channels. This is the essence of a QFT
Method 2 (or Improved Method) design. Obviously, the first MISO loop design is performed using the
original (Method 1) design technique, since no knowledge of the other loops yet exists. The Method 2
design technique is then applied to the remaining loops.

In a Method 2 design, the order in which the MISO loops are designed is no longer irrelevant.
Typically, the loop with the least uncertainty, and therefore the smallest bandwidth requirement, is chosen
as the first design loop. The reason for this choice can be seen in the development of the Method 2 design
technique presented in [17]. Any loop designed with Method 2 will have a bandwidth equal to or greater
than the previously designed loops. Choosing the loop with the lowest bandwidth then supports the
bandwidth minimization optimality criterion stated in the previous chapter. In this study, the bandwidth

can most easily be obtained from the Bode plot of the Q matrix, Fig. 81, Appendix D. Bandwidth is
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typically defined as the half-power point, the frequency at which the magnitude is 3 dB down from (70.0%
of) the w = 0 value. This frequency, for the three channels in this study, is approximately 0.6, 0.2, and 0.12
rad/sec respectively, so the third (yaw rate) channel would typically be designed first. Additionally, the
most restrictive disturbance bounds for the primary channel of interest in this study, the first (roll rate)
channel, are due to the cross-coupling effects of the third channel. Therefore, a Method 2 design based on
the yaw rate channel should potentially yield the best resuits.

In this study, however, the Method 2 design technique does not produce any significant
performance improvements for two reasons. First, the roll rate tracking bounds of Fig. 16 are much more
dominant at low frequencies than the re!l rawe cross-coupling disturbance bounds of Fig. 15 (the bounds for
the yaw channel are very similar). Second, the phase margin frequency of all three channels is very high.
Initial design steps for the yaw channe] show that the low frequency allocated tracking bounds make the 30
rad/sec phase margin frequency requirement discussed in the previous chapter very difficult to meet. An
initial Method 1 design for the yaw channel has a phase margin frequency of approximately 27 rad/sec.
Because the phase margin frequencies of the succeeding channels to be designed using Method 2 will be
greater than this, the 30 rad/sec requirement is very difficult to meet. A preliminary design of the second
(pitch rate) channel shows the satne dilemma, the allocated tracking bounds require a phase margin
frequency within only a few degrees of the 30 rad/sec requirement. Therefore, the Method 2 design
technique is not suitable to this study. Additional justification for this statement is provided in the
following detailed design sections.

Because the Method 2 design technique is not applicable, and because the diagonal dominance
condition is satisfied for this system, the Method 1 design technique is employed in this study. The QFT
compensator and prefilter designs for the channel of primary interest, the roll rate channel, are performed

first, followed by the designs for pitch and the yaw rate channels.
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5.2. Roll Rate Channel Design
Plant case #4 is selected as the nominal plant for the roll rate channel design as discussed in Chapter
4. The nominal plant transfer function associated with this loop, from Appendix D, can be rep-esented in

pole-zero format:

382,638 (~15.5951 £ j41.2)(-21.797 £ 732.8031)(-55.805 + j83.9308)

& = (110)
T = (20.5778)(<13.8037 £ /18 5569)(~15.947 £ j39.4318)(—48.7136 £ j53.6489)(-57.6412 £ ;84.2113)

where the negative signs denote lefi-half plane roots and the first term in the numerator is the gain.

5.2.1. Compensator Design. The initial open-loop transmission (L,, = q,,, since g, =1) along with
the composite bounds, is shown in Fig. 17. i"ur stability, the nominal loop transmission must pass around
the right side of the stability contour, and to meet the performance specifications, the nominal loop

transmission must lie above the composite bounds at each corresponding frequency.

Before designing the compensator, several of its characte:istics can be identified. First, the
bandwidth of the open-loop transmission must be small enough that tie aircraft body-bending modes are
not excited by commanded or disturbance inputs. Therefore, a high-frequency roll-off rate of at least -60
dB/sec is designed into the open-loop transmission. This roll-off rute is achieved by ensuring that the
transfer function for the open-loop transmission has an excess of at least three poles over the number of
zeros. Since the plant itself has three excess poles, the compensator for this channel must have at least an
equal number of poles and zeros, although more poles are allowed. Second, to allow closed-loop tracking
of a step input, the open-loop transmission must contain a pure integrator (pole at the origin). Because the
plant itself does not contain a pure integrator, this is the first element to be included in the conipensator, g,.
Finally, the gain of g, must be increased to raise the open-loop transmission above the low-frequency
allocated tracking bounds.

With these basic characteristics of the compensator identified, the design process begins.
Knowledge of the plant transfer function, the graphical display of the CAD package, and automatic gain

adjustment in the CAD package, make the selection and adjustment of compensator poles and zeros a
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Figure 17. Roll Rate Channel, Initial Loop Transmission and Bounds

relatively straightforward task, provided that the bounds can be met. In the case of this channel, however,

these bounds are not easily met. The compensator transfer function, in pole-zero format,

_ 900(~35)(-10.25 % j17.7535)(~5)
& T (0)(60)(—=50)(-20)

(1n

yields the open-loop transmission shown in Fig. 18. The allocated tracking bound of 0.01 rad/sec makes

the 30 rad/sec , requirement just attainable. However, this requirement is met only at the expense of

violating the ® = 10.24 rad/sec cross-coupling disturbance bound from the yaw channel (the dotted curve).

The tradeoff is then between the allowable cross-coupling 1n the yaw rate channel and the 30 rad/sec o,
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requirement. In flight control system design, the latter is a more fast design rule than the former.
Additionally, the disturbance bound is a mere reflection of the rather arbitrary cross-coupling disturbance
specifications set at the beginning of the QFT design. As can be seen in Fig, 18, the disturbance bound
violation is less than 5 dB, and does not result in a significant degradation of the closed-loop response, as
shown later. Therefore, with the 30 rad/sec @, requirement having greatest priority, the compensator of Eq.
(111) is chosen as the final design for the roll rate channel, despite the cross-coupling disturbance bound
violation. Figure 19 shows that the open-loop transmissions for all twelve plant cases meet the desired

stability specification of Y= 45°. Again, note the grouping of the plants by the three F.C.s.
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Figure 18. Roll Rate Channel, Compensator Design



s-Domain Open Loop Transmissions for Channet 1
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Figure 19. Roll Rate Channel, Stability Validation

5.2.2. Prefilier Design. Like the compensator design, the prefilter design is rather straightforward
using the CAD package. The ooject of the design process is to design the prefilter transfer function which
causes the nominal open-ioop transmission due to tracking, ¢,,, to fall within a set of bounds representing
«he tracking specifications. Simple selection of appropriate poles and zeros, with the automatic gain

adjustment provided by the CAD package, produces a prefilter to meet the bounds:

_ 23.04
(-3.744 £ j3.00374)

A (112)

as shown in Fig.20.
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Figure 20. Roll Rate Channel, Prefilter Design

The successful design of the compensator and prefilter completes the roll rate channel design. The
performance validation of this channel, along with the other two channels, is presented in the validation

section of this chapter.

5.3. Pitch and Yaw Rate Channel Designs
The compensator and prefilter designs for the pitch and yaw rate channels are relatively similar to
the roll rate channel design. However, several differences are worth noting, and are therefore presented in

this section.
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Plant case #4 is again chosen as the nominal plant for both the pitch and yaw rate channels, as it was

for the roll-rate channel. The plant transfer functions for these two channels in pole-zero format are:

_ -204.4086 (~14.7658 £ j21.9937)(~17.1538 + j86.6395) (113)
D, = (01485)(-13 £ j15.1987)(~14.924 £ /33.1999)(~62.127 £ 785.0196)

_ -853.0411 (~15.5951 £ 741.2003)(-21.797 + j32.8030)(~55.805 + 83.9308) (114)
D3, = (C01181)(<13.1446 £ /15.9248)(~15.7355 £ j42.0323)(~49.6517 £ ; 52.1 523)(~55.2737 £ 83.7978)

5.3.1. Compensator Designs. The composite bounds for the pitch channel, shown in Fig, 21, are
very similar to those in the roll rate channel design. However, the initial open-loop transmission does not
start with a zero degree phase angle, as does the roll rate channel open-loop transmission, due to the
negative gain. Therefore, to achieve the initial -90 degree phase angle required for perfect tracking, the
compensators for the pitch and yaw rate channels must have a negative gain and a pole at the origin,
Introducing a negative gain shifts the start of the open-loop transmission back over to the zero degree phase
angle line (where the roll channel open-loop transmission starts), and the pole at the origin (pure integrator)
shhifts open-loop transmission to the -90 degree phase angle line, ensuring perfect tracking, Again, the
number of poles must equal or exceed the number of zeros in the compensators for both the pitch and yaw
channels, so that the open-loop transmissions have a high-frequency roll-off of at least -60 dB/dec.

Using the CAD package, the following compensators for the pitch and yaw rate channels are

realized:

_ —1225(=5.5)(~17.1£ j22.8)(~32)
27 (0)(-57%,18.735)(-65)

(115)

_ -300 (—6)(-14.35+ j14.6399)
& (0)(=50)(=50)

(116)
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Figure 21. Pitch Rate Channel, Initial Open-Loop Transmission and Bounds

The open-loop transmissions for these final compensator designs, as well as the stability validation plots
for all plant cases, appear in Figs. 22 - 25. It should be noted that no performance bounds are violated to

meet the w, = 30 rad/sec phase margin frequency requirement.
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Open Loop Transnussion gi(s)*qu(s) for Channel 2
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s-Domain Open Loop Transmussions for Channel 2
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Figure 23. Pitch Rate Channel, Stability Validation
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Open Loop Transmussion gi(s)*qit(s) for Channel 3

110. T : i T i
100 ! 00t L
i i { / |
| ' | / i ;
! = -2 0.02 N
AT o 2R
\ . 1

! i ! | {
80 0.04 - l |

|

t

|

.
s
—) N |
N A 0,08- -

60. : -
s /

50 ' 846 f —
i | : { ——= i
) i = :
I S - T _x B s il &
30. ;

| i i
20, e kS T
e sl S AR e N e SR et
10 162, < = \ | :

02—

Q 1
i S }

36

1

ya
0070, -260. 20 770 I, .0, MO 10 0. 86 .

Figure 24. Yaw Rate Channel, Final Compensator Design
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Figure 25. Yaw Rate Channel, Stability Validation
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5.3.2. Prefilter Designs. The prefilter designs for the pitch and yaw rate channels are identical to

each other, and very similar to th'  oll rate channel prefilter design.

25
fz=f;=m (117)

The prefilter design plots a.¢ nearly identical to the roll rate channel prefilter design plot shown in Fig. 19

and are therefore not included in this presentation.

5.4. Performance Validation

If all bounds are met in the design process, the compensator and the prefilter should yield a system
which meets all stability and performance bounds. Figures 19, 22, and 24, demonstrate that the
compensated system meets the stability specifications. The CAD package alsc provides a means to test the
tracking response of the closed loop system. A visual inspection of the Bode plots of the transfer function

matrix T = {¢,} for all plant cases, and of the performance bounds a, and b, allows easy identification of

7
performance violations, as shown in Fig. 26.

The consequences of violating the -26 dB cross-coupling disturbance bound in the roll rate channel
design is evident in the {1,3} element of the tracking validation matrix. A close-up view of this element,
Fig. 27, shows that the actual violation is approximately 4 dB, which is very close to the violation seen on
the Nichols chart during the compensator design (Fig. 18). This violation translates to a maximum yaw
rate output, due to cross-coupling, of approximately 1.5 deg/sec, given a 20 deg/sec roll rate command.
The maximum sideslip angle that can develop in the one second transition region of the velocity vector roll
1s 1.5 deg, which is not large enough to invalidate the near-zero assumption used in the QFT model
development. Therefore, the cross-coupling disturbance bound violation is deemed acceptable. All other

performance bound violations appearing in Fig. 26 occur at frequencies well above the bandwidth

frequency of approximately 10 rad/sec, and are therefore also deemed negligible.
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Figure 27. Tracking Validation, {1.3} Element Close-Up

5.5. Design Sumnmary
The compensator and prefilter designs for the three channel MIMO system are summarized in Table
6. The QFT designs are shown to provide a stable closed-loop system meeting the desired phase margin

angle of forty-five degrees, the phase margin frequency requirement of 30 rad/sec, and acceptable tracking

performance requirements. The MIMO compensator and prefilter,

rg, s) O 0
G(s)=f 0 g(s) 0 (118)
0 0 gs)
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fils) O 0
FG)=| 0 f(s) © (119)
0 0 fi(s)

are therefore ready for simulation of the velocity vector roll maneuver.

Table 6. Design Summary, Compensator and Prefilter Transfer Functions

g 1 8 2 & 3
900 (~5)(-10.25 + j17.7535)(-35) —1225 (-5.55~17.1 j22.8)(-32) -300 (-6)(-14.35 j14.6399) ||
(0)(—=20)(~50)(-60) (0)(-57 £ j18.735)(~65) (0)(=50)(-50)
— |
h f; 5
“ 2304 25 25 |
(-3.744 1 j3.00374) (-4£53) (413)
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6. Velocity Vector Roll Simulation

This chapter describes the various simulations used to validate the QFT compensator designed in
the previous chapter. All simulation steps, including model development, input definition, and output
analysis, are presented as the simulation complexity increases from basic linear simulations to complex
nonlinear six DOF simulations. All simulations are performed in MATLAB's Simulink program running
on a Sun SparcStation 2. The Simulink block diagrams, based on the three DOF linear model developed in
Chapter 3 and the six DOF partially linearized model presented in Chapter 2, are presented for each

simulation, and the simulation output plots are presented in this chapter and in Appendix E.

6.1. Three DOF Simulation

The first, and most basic, method of validating the QFT design is to form a closed-loop system
around the linear three DOF open-loop model presented in Chapter 3 and shown in Fig. 73, Appendix B.
Because this model, fitted with the proper A and B matrices, exactly matches the plants entered into the
QFT CAD package, these closed-loop simulations only show that the QFT design methodology has been
successfully applied to the. plants loaded into the CAD package. These simulations do not validate the
applicability of the three DOF models and of the QFT design to the nonlinear plant performing a velocity
vector roll maneuver; this nonlineat design validation is performed using the six DOF model in the
upcoming sections of this chapter.

To form the closed-loop system, the compensator, prefilter, weighting matrix, and actuator
dynamucs are incorporated into the open-loop three DOF model. Because the actuatcr models must be
piaced between the weighting mairix and the plant control inputs, the weighting matrix of the three DOF
open-loop simulation cannot be "rolled into" the B matrix of the state-space model as done in the open-
loop model development in Chapter 3. Instead, the weighting matrix must be placed as a separate entity in
the forward path, ahead of the actuator models and after the compensator and prefilter blocks. A feedback
loop is placed around the compensator, weighting matrix, actuator models, and plant model, produciag the

closed-loop three DOF system shown in Figs. 28-30.

72




follemd Tgain*1]1zeros(
Roll

fil

pitemd»~E7 - S
Piich B2

awermn am ZETOS!
Yaw B 3

—Ndar]
::»mu_ﬁch' der_out
, —ouss{dp
| edivy] divp_ou
K Deflections dry_ou
. i
|
5 | R
: x'= Ax+Bu o
S v e s e [
Sum2 ! ! jr_‘
»+ I e
- G Weightng ~ Actualors 3 DOF Model . States r_out
Sum3  (3x3) b(%%n)x ( (3x6)

Figure 28. Thre= DOF Closed-Loop System, Top-Level Block Diagram

'—] gllgun®gllzeros(s)
u. g gllpoles(s)
n_} g

g22gain*g22z2¢e108(s) 3 !'—]
IZ}—’ g22poles(s) Mux _IJ
in_2 22 out_!
E‘_’ g33gain*gdlzeros(s)

g33poles(s)
n_3 &3
Mux

Figure 29. Compensator (G) Block Diagram

T
Inport

L_ i

» Demux

alsct num(s)

alsct_den(s)
Atleron Actuator

clact_nunms)

elact_den(s)

.‘ elact num(s) |
i elact _den(s)

i Jact_num(s)

Elevator Actustor (Roll)

Elevator Actuator (Patch)

’! tvact_den(s)
TV Actuator (Pitch)

—_—
tvact_numy(s)

tvact_den(s)
TV Actustor (Yaw)

——
radsct_num(s)

rudact_den(s)
Rudder Actuator

Detcux

Mux

Figure 30. Actuator Dynamics Block Diagram

73




An exhaustive time-domain validation of the QFT design requires that simulations be performed on
all twelve linear plant cases used in the design process. However, six simulations covering the entire range
of variation in the nonlinear parameter (Pparam = 0, 8, 16, 24 deg/sec) at an altitude of 10,000 feet, and the
entire range of altitudes (10, 15, 20 kft) for the maximum value of the nonlinear parameter (Pparam = 24
deg/sec), are sufficient to demonstrate the applicability of the QFT design to a velocity vector roll using the
three DOF closed-loop system. These simulations are identical to those used to validate the open-loop
three DOF model in Appendix B.

The velocity vector roll maneuver is simulated by commanding a 20 deg/sec (0.349 rad/sec) step
roll rate and a constant zero pitch and yaw rate, to each of the closed-loop models described in the previous
paragraph. The desired response to these inputs is a 20 deg/sec roll rate and near-zero pitch and yaw rates
throughout the one-second transition region of the velocity vector roll. The simulated aircraft response to
these inputs, as well as the simulated control effector group commands, is presented in Fig's. 82 -93,
Appendix E. These plots show that the 20 deg/sec roll rate can be achieved in the required one-second
time period, while regulating the pitch and yaw rates within the maximum allowable 1 deg/sec rate design
specification. As expected, the cross-coupling effect in the pitch rate channel increases as the value of
Pparam increases, yet the pitch rate remains within the design specifications for all plant cases. Similarly,
ilie cross-coupling in the yaw rate channel stays well below the maximum allowable rate for all plant cases.

Interestingly, the changes in Pparam and the resulting changes in pitch rate response have no
noticeable effect on the response 1n the roll and yaw rate channels, even though the equations for these two
channels include the modeled nonlinearity Pparam*q. This implies that this nonlinearity is non- dominant
in these state equations. The F.C. grouping of the open-loop transmission plots in the design chapter
provide an early indication of this phenomencn.

One of the limitations of linear design techniques is the inability to account for, or design to, the
«onlinearities caused by control surface saturation. While the aircraft state responses described above are
impressive, the control effector group commands required to achieve these rates are not reasonable. The

maximum permitted control effector group commands are presented in Eq. (81), Chapter 3. For all plant
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cases, the yaw thrust vectoring and the yaw rudder control effector group commands that these simulations
use to maintain the low yaw rate exceed their respective limits by appreximately fifty percent. To properly
account for the limits on control effector group limits, saturation blocks are added to the closed-loop
system. The addition of saturation blocks is postponed, however, until the more realistic six DOF
simulations are introduced.

The over-taxing of only the yaw conirol effectors does point out one characteristic of the aircraft
and the weighting matrix and compensator designs; that is, the initiation of the velocity vector roll causes
the yaw control effectors to saturate before the roll control effectors. This characteristic implies that the
maximum velocity vector roll rate is limited by the cross-coupling characteristics of the aircraft, which the
control system cannot overcome. Looking at the yaw rate response, it is tempting to conclude that the yaw
rate cross-coupling design specifications should be relaxed shghtly such that the yaw rate would be
allowed to drift closer to the -1 rad/sec design limit. In this way, the yaw control effector commands would
be reduced, and pethaps not exceed the saturation limits. This is not a reasonable solution, however,
because the cross-coupling disturbance bounds are frequency dependent. For the frequencies in this
particular simulation the yaw rate only drifts to slightly more than -0.4 deg/sec. However, based on the
cross-coupling disturbance bounds 1n the roll channel design Nichols charts, this yaw rate approaches, and
actually slightly exceeds, the maximum allowable negative excursion of -1 deg/sec for higher frequency
inputs. Therefore, the saturation of the yaw control effectors is simply a characteristic of the aircraft which
must be accepted.

One final point of interest ‘s the small oscillations that appear in the roll aileron control effector
group commands. Surprisingly, these oscillations are not visitly present in any other control effector
group commands or in the roll rate response. However, some very slight oscillations are present in the
yaw rate response to the maneuver. Since the roll and yaw channels are highly coupled, the oscillations in
the yaw channel are likely the source or the result of the oscillations in the 1u!! aileron control effector

group commands. A more thorough investigation of this phenomenon is performed in Chapter 7.
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Barring the control effector command characteristics, the three DOF simulations demonstrate that
the QFT compensated system meets the desired performance requirements. The next simulation step is to

incorporate the QFT design into the partially linearized six DOF model.

6.2. Six DOF Simulation, No Control Effector Limits

The three DOF simulations in the previous vhapter demonstrate that the QFT design methodology 1s
successfully applied to the linear plants entered into the CAD package. The six DOF simulations presented
in this section extend the design validation by incorporating the true roll rate induced nonlinearities into the
plant model. Therefore these simulations validate the primary focus of this study: treating the
nonlineanties introduced by the velocity vector roll maneuver as structured uncertainty in the QFT design
methodology.

The closed-loop six DOF system is based on the open-loop six DOF model, Fig. 6 in Chapter 2, and
includes the QFT prefilter and a feedback path encompassing the compensator, weighting matrix, actuator
models, and six DOF plant model, as shown in Fig. 31. All system components, with the exception of the
six DOF plant model, are identical to those in the three DOF closed-loop system.

Recall that the development of the three DOF linear plant from the six DOF nonlinear plant in

Chapter 3 is based on the following assumptions:
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Figure 31. Six DOF Closed-Loop System, Block Diagram
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¢ the regulation of the fast pitch and yaw states to a near zero value produces negligibly small
sideslip and yaw angles, therefore ¢ = =0

e ¢=0ornm
Therefore, proper validation of this development requires that the six DOF simulations support these
assumptions in both the velocity vector rol! initiation and arrest transition regions. Because the
nonhmearities due to the velocity vector roll maneuver are now included in the six DOF plant model, only
three velocity vector roll simulations, corresponding to the three F.C.s, in each transition regior. of the

velocity vector roll are required to validate the design.

6.2.1. Initiating the Velocity Vector Roll. This transition regio.. is the most straightforward to
simulate with the six DOF closed-loop system. The aircraft is assumed to be trimmed at thirty degrees
AOQA, and thus all model states are equal to zero. The inputs required to initiate a 20 deg/sec velociiy
vector roll are a 20 deg/sec (0.349 rad/sec) step velocity vector roll rate command (P), and a constant zero
pitch and yaw rate command.

The state responses to the velocity vector roll command are presented in Figs. 94 - 99, Appendix E,
along with the control effector group commands for each F.C. These plots show that the state responses
aud control effector group commands are virtually identical for all three F.C.s. Therefore, the discussion in
this chapter focuses on the 10,000 foot altitude F.C., but is equally applicable to the other two.

The roll and yaw rates experienced in the six DOF simulations are virtually identical to those in the
three DOF simulations of the previous section, confim.ing that the nonlinearities, due to the Pq term, i the
roll and yaw rate channels of the EOM, Eqs. (53) and (55), are indeed negligible in the transition region of
the velocity vector roll at high AOA. This finding 1s, of course, based on the requirement that the pitch rate
is regulated to a small value by the control system throughout the transition region of the velocity vector
roll. This requirement is upheld with the QFT compensated system; the magnitude of the pitch rate falls
within the range of pitch rates experienced in the linear three DOF simulations as the nonlinear parameter
Pparam varies from 0 to 24 deg/sec. Note that the pitch rate increases inore slowly in the six DOF

simulations thar. in the three DOF simulations since the nonlinearity increases gradually with the roll rate.




The most important assumption in the three DOF model development is that the AQA and sideslip
angle remain close to zero (o = f = 9). This assumption not only guarantees that the terms containing ¢
and S in the three rate equations are non-dominant, but also provides the necessary conditions for a
successful velocity vector roll. Any significant departure in AQA or sideslip angle means that a true
velocity vector roll has not been performed. Regulating the pitch and yaw rates to near-zero values helps
ensure that this terminal condition is met. Indeed, the state response plots indicate that the small @ and §
assumption is justified for the velocity vector roll initiation maneuver.

The final assumption, ¢ = 0 or & radians, cannot be validated as easily. The simulation plots show
that over the 1 second period of the simulation, nearly 15 degrees of bank angle develop; this can hardly be
considered neghgible. Does this mean that the development 1s invalid? To answer this question, one must
look at the six DOF EOM presented in Eqs. (43) to (48), Chapter 2. The basis for the bank angle
assumption lies in the trigcnometric contributions of the bank angle to the ACA and sideslip state
equations. A zero bank angle causes the trigonometric terms in both equations to be zero, removing any
dependence of these states on the bank angle; this ensures that states are drivea primarily by the pitch and
yaw rates which are regulated by the control system. As the bank angle departs from zero, the
trigonometric tenns increase, along with the potential of bank angle dominance. Because the AOA and
sideslip excursions in the simulations do remain negligibly small, the violation of the bank angle
assumption is justified, in this transitions region of the velocity vector roll maneuver. However, using the
design outside the short time period of the transition region, or when the bank angle does not begin with a

zero value, may result in larger excursions. This situation is discussed in the following section.

6.2.2. Arresting the Velocity Vector Roll. he second transition region, arresting the velocity vector
roll, is far more difficult to simulate than the first transition region, nitiating the velocity vector roll. One
cannot adopt the simplistic "run of the mill" approach of assuming an initially quiescent plant, because

each dynamic element in the system has associated with it an initial condition (IC) that is compatible with a
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steady angular rate velocity vector roll. To illustrate this fact, and to determine the IC requirements,
consider the following development.

Arresting a velocity vector roll implies that the aircraft is already rolling about its velocity vector
with some roll rate P. In an ideal velocity vector roll, the other states in the six DOF EOM are all zero,
except for the bank angle which increases linearly at the rate of the velocity vector roll. The imtial

conditions attributed to the six DOF model used in the previous section are therefore:

P, =0.34907 rad/sec  (20deg/ sec)

¢, =0rad

g, =0 rad/sec

o, =0rad (120)
r, =0 rad/sec

B, =0rad

where the bank angle is given an IC of zero to remove its side-effects from the six DOF model.

Before simulating the velocity vector roll arrest maneuver, the ICs are tested on the closed-loop
system to ensure that they properly define the state of the aircraft. The simplest way to isolate the effects
of the ICs on the aircraft is to command the system to maintain the states defined by the ICs. For the ICs in
Eq. (120), the command is a 20 deg/sec roll rate and zero pitch and yaw rates. Properly defined ICs should
yield a system response to the commanded inputs in which all states of the system simply maintain their
ICs. The simulated response, however, is far from the ideal response, as shown in Figs. 32 and 33. Almost
immediately the roll rate drops below zero from its 20 deg/sec IC, and the yaw rate rises to nearly 10
deg/sec, well outside the design specifications. In addition, the oscillations which appear rather benignly in
the velocity vector roll initiation simulations now appear in alarming proportions in the roll and yaw rate
states, and in the roll channel control effector groups. Again, because the actuators are treated as linear
devices with no saturation, the control effector group commands violate their limits, but this time by orders

of magnitude. Obviously, the ICs have not been properly defined for this simulation.
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Maintain 20 Deg/sec Roli Rate : IC=P20, Cmd=P20
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Control Effector Group Commands : IC=P20, Cmd=P20
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It appears that some dynamics in the system are not being properly accounted for by the ICs. From
the six DOF EOM, the only dynamics in the system appear to be in the six states. However, an inspection
of the system block diagram, Figs 28 - 30, reveals the other dynamic elements of the system which have
not been accounted for: the prefilter, compensator, and actuators. To properly describe the aircraft's
dynamics at any point in time, all states of each dynamic element in the system must be appropriately
defined. For instance, the previous simulation does not account for the control effector group commands
required to maintain the 20 deg/sec roll rate used as an initial condition. Because the actuators do not
respond instantaneously, the time required to get the actuators to the correct position is sufficient to bring
the roll rate back to a zero value, and to set up severe oscillations in the system! Appropriately defined ICs
must therefore satisfy the input, output and state conditions of the aircraft, that is, the trim condition for the
current augmented state of the aircraft. For instance, if the trim condition models a constant roll rate, the
actuator dynamics (as well as all other dynamic) states mu-t represent the actuator pesitions required to
maintain the roll,

For this six DOF system, the trim condition requires the identification of 39 states, which are
quantitatively identified in Table 7. Obviously, the determination of the appropriate ICs for all 39 states,
especially the internal states of the actuators, is a computationally intensive task. MATLAB's Simulink
includes a function called trim which may be used to evaluate these ICs. An alternate method, perhaps

more realistic to :his design, is to usc the final state condiuons from the velocity vector roll initiation

Table 7. States in Six DOF Model

Source z‘g‘:;z State Names
Six DOF Mode! 6 P,¢,q,0,r,p
Aileron Actuator 2 Roll Aileron
Elevator Actuator 8 Roll, Pitch Elevator
TV Actuator 4 Pitch, Yaw TV
Rudder Actuator 2 Yaw Rudder
Compensator 11 &r8»&;
Prefilter 6 Jotots
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simulation as the ICs for the velocity vector roll arrest simulation. This is equivalent to commanding a
20 to 0 deg/sec roll rate doublet, but allows the modification of the states between simulations.

This new IC concept is tested by simulating the continuation of the velocity vector roll, as done for
the previous IC concept. Applyirg the velocity vector roll initiation final conditions to the model, and
commanding a 20 deg/sec roll rate, yields the aircraft response in Figs. 34 and 35. This response is far
more realistic than the previous results, with no discontinuities between the final state responses of the
velocity vector roll initiation simulations and the initial state responses of this simulation. These ICs are
therefore considered acceptable for simulating a velocity vector roll arrest.

To simulate the velocity vector roll arrest, the final state values of the velocity vector roll initiation
are again used as ICs. However, to explore the effects of the bank angle on the system, the bank angle IC
is changed to 170 degrees. While changing just one IC violates the trim condition, the impact on the
system is rather insignifi.ant since the bank angle only affects the "slow" AOA equation through the
trigonometric contribution. The commanded input for the velocity vector roll arrest is a 0 rad/sec
command in all three closed-loop system inputs.

The closed-loop system resnonse to the velocity vector roll arrest command is shown in Figs. 36 and
37. The roll rate tracks the zero input within the one-second transition period, and the pitch and yaw rates
stay well below the maximum 1 deg/sec allowed by the specifications, thereby validating the QFT
compensator design. In fact, the pitch and yaw rate responses look very muck . . the i- verse of the
velocity vector roll initiation responses, with a slight offset due to the initial conditions, as expected. Most
importantly, the AOA and sideslip angles remain relatively small, validating the ¢ = § = 0 assumption.

It is interesting to note, however, that the worst of these two angles, the AOA, continues to steadily
increase, even as the other states of the system appear to flatten out to some steady-state value. This clearly
identifies the dominance of the bank angle term ir the AQA state equation, and identifies one of the
limitations of this three-axis rate-commanded control system. The AOA state equations is a differential
equation. Therefore, a dominant constant bank angle term produces a linearly increasing (first-order) AOA

response, and a dominant increasing vank angle term produces a second-order AOA response.
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Maintain 20 Deg/sec Roll Rate : IC=Prev All, Cmd=P20
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Arrest 20 Deg/sec Roll Rate : IC=Prev All Phi=170, Cmd=P0
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Figure 36. Arresting a Velocity Vector Roll, 10kft

Control Effector Group Commands : IC=Prev All Phi=170, Cmd=P0
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In this simulation, the bank angle increases only slightly, so the AOA appears to increase linearly.
This increase is, however, independent of the pitch rate regulation when the bank angle term is dominant.
In other words, the assumption that the AOA remains small when the pitch rate is kept near zero is not
valid when the bank angle term of the AOA state equation is dominant. And when is the bank angle
dominant? Looking at the velocity vector roll initiation state response plot, Fig. 94, Appendix E, it appears
the bank angle becomes dominant at a rather low bank angle, perhaps two or thrze degrees. Therefore,
even in the velocity vector roll initiation transition region, the AOA seems to be driven primarily by the
bank angle. The fact that the AOA stayed relatively close to zero therefore has little to do with the
regulation of the pitch rate state. Instead the magnitude of the bank angle term (which is primarily a
function of airspeed), the ICs, and the relatively short time period for each simulation are the primary
contributors to the low AOA responses.

This AOA dependence on the bank angle and the ICs has several rather significant implications with
respect to the use of the three-axis rate-commanded control system designed in this study. First, this
velocity vector roil control system should only be applied when the AOA is very close to the desired final
value of the AOA. Second, this velocity vector control system should only be used for short periods of
time (less than two seconds). If used for longer periods of time, the lack of AOA control results in a
significant departure from the desired final AOA. Finally, the control systems ICs used for the arrest of a
velocity vector roll can, and should, be tailored such that the desired final conditions (presumably all
aircraft dynamic states equal to zero) are attained at the end of the maneuver. This "tailoring" must be
performed by the optimal controller used in the "free-stream’ region of the velocity vector roll. Foresight
into these limitations of the control system lead to the time-scale separation concept introduced at the onset
of this study.

As in the previous simulations, oscillations are present in the roll aileron control effector command.
These oscillations are again relatively small, and are considered acceptable. However, they do indicate the
potential for catastrophic oscillations as experienced in the first IC simulation, and are therefore studied in

further detail in Chapter 7.
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6.3. Six DOF Simulation, Limited Control Effectors

In the previous sections, the linear control system design has been shown to produce a closed-loop
system meeting all pre-defined stability and performance specifications, even using a nonlinear six-DOF
aircraft model. However, as previously mentioned, one hmitation of linear design techniques is the
inability to account for the saturation limits of control effectors. In this section, the control effector
saturation limits for the HARYV are integrated into the six DOF nonlinear model, and simulations of a
velocity vector roll initiation and arrest are performed to determine the impact of the saturation limits on
the closed-loop system performance. Because the velocity vector roll is a large amplitude maneuver
requiring large excursions in the control effectors, the saturation limits are expected to have a significant
detitimental effect on the closed-loop system performance. And, since the linear control system design
technique does not incorporate the control effector limits into the compensator and prefilter designs, the
performance of the limited system does not meet the desired specifications.

The need for limited control effector excursions is apparent in the previous simulations. For
instance, the commanded yaw rudder in Fig. 37 is slightly more than 40 degrees, but the limits on the yaw
rudder are only £30 degrees. In Fig. 33, the roll aileron commands are over 1000 degrees (rearly three
revolutions)! Obviously, these control effector commands are unrealistic, and the resulting state respunses
for these simulations are invalid. Therefore, the effects of control effector saturation are added to the six
DOF simulation. Control effector saturation is modeled in the closed-loop system with saturation blocks,
as shown in Figs. 38 and 39. The limits placed on the saturation blocks are defined in Eq. (81), Chapter 3,
and represent positional (magnitude) limits; control effector rate limits are not included in this study. All
other blocks in the closed-loop system remain the same.

The simulations performed with the limited six DOF closed-loop system are the velocity vector roll
initiation and arrest. The initiation simulation is performed first, using the same input commands as in the
previous initiation simulations. The arresting simulation follows, using the final states of the initiation

simulation as ICs, and using the same input commands as in the previous arresting simulations.
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The response of the limited six DOF closed-loop system: to the velocity vector roll initiation
commands is shown in Figs. 40 and 41. A comparison with the response of the closed-loop system without
control effector limits, Figs. 94 and 99, Appendix E, leads to the conclusions presented in this section.

The control effector limits havs very little effect on the roll rate, and the corresponding bank angle,
achieved during the one-second transition region. This is expected, since the roll control effectors did not
reach their maximum values in the previous simulations.

The most dramatic effect of the control effector limits is in the yaw rate response. In the controi
effector limited system, the yaw rate slightly exceeds the 1 deg/sec design specification in the negative
direction, and doubles the specification in the positive direction. The control effector group commands

show the cause of this violation. The yaw control effectors saturate in a relatively short amount of time,
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and therefore limit the ability of the control system to counter the cross-coupling in that channel. Another
result of this yaw control limiting also appears in the pitch rate channel, where the response is more
sluggish than in previous simulations, but still well within the maximum allowable departure limit of 1
deg/sec.

More important than the pitch and yaw rates, however, are the AOQA and sideslip angle channels.
As discussed in the previous sections, these angles must be kept near zero for a velocity vector roll to be
considered successful. Figure 40 shows that these angles are near zero throughout the entire period. In
fact, these angles are actually smaller than those in the unlimited control effector simulations. The smaller
and differently responding AQA indicates that the AOA state equation is actually dominated by the P
term at near-zero bank angles, in contrast to the bank angle domination experienced at high bank angles.
In fact, it appears that the bank angle does not become dominant in the AOA state equation until the bank
angle is at approximately 10 degrees, contrary to the previous ¢onclusion that bank angle domination
occurs when the bank angle reaches 2 or 3 degrees. The sideslip angle term domination in the AOA state
equation indicates that at low bank angles, thz sideslip ICs must be near-zero, and must be kept small unti!
the bank angle term begins to dominate. Since this condition is met in this simulation, where the sideslip is
initially zero, the compensator and prefilter are deemed acceptable for the velocity vector roll initiation
transition region.

The response to the velocity vector roll arrest commands, appears in Figs. 42 and 43. Again, as in
the initiation region, the roll rate, bank angle, and pitch rate states are relatively unaffected by the control
effector limits, since the roll control effector commands do not reach their limits. The yaw rate channel,
however, is significantly different than yaw rate response of the unlimited model to the velocity vector rall
arrest commands, Fig. 36, due to the saturation of the yaw control effectors. The yaw rate does remain
within the 1 deg/sec specifications for the majority of the period, with only twe slight violations. Despite
these violations, however, the sideslip angle remains sufficiently close to zero, and the integrity of the

velocity vector roll is not compromised.
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Resnonse to 20 Degisec Roll Rate Command : 10kft, Actuators Limited
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Figure 40. Response to Roll Command, Limited Closed-Loop System, 10kft
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Arresting 20 Deg/sec Roll Rate : IC=Prev All Phi=170, Cmd=P0, Actuator Limits
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Figure 42. Arresting a Velocity Vector Roll, Limited Closed Loop System, 10kft
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Figure 43. Limited Control Effector Croup Commands, Velocity Vector Roll Arrest, 10kft

90



The AOA response to the velocity vector roll arrest command is nearly identical to that obtained in
the arrest simulations fo: the unlimited controi effector model because the bank angle term in the AQA
state equation is dominant when the bank angle is near 180 degrees. With a near-zero IC, the AQA reaches
a final value of approximately 1.5 degrees, but is still increasing. Therefore, one desired quality of a future
control system desigred fort . "free-stream" region of the velo.ity vector roll is that it drives the AOA to
some slightly neg... v= value. From the control effecior command plots, it appears that this quality could
be rather readily achieved, since the pitch control commands are well within their limits, leaving plenty of
1 itch control authority.

Based on the simulation results nresented in this chapter, the QFT designed compensator and
prefierar. deemedto b acceptable for the initiation and the arrest of the velocity vector roll manecver of
tue HARV 2': .raft ~ven with limited ccatrol effectors. Attention can now be turned to the oscillations

presentin . :3b  .eron control effectnr commands; this is the focus of Chapter 7.
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7. Control System Modifications

The purpose of this chapter is to identify and climinate the source of oscillations in the roll aileron
control effector corimands of the of the previous chapter. A potential flaw in the weighting matrix s
identified and corrected, and the three-axis rate-commanded QFT control system is redesigned to account
for these changes. Velocity vector roll initiation and arrest simulations are then performed with the re-

designed system to demonstrate its improved performance.

7.1. Weighting Matrix

All simulations in the previous chapter reveal small oscillations in the roll aileron control effector
commands. Because these oscillation do not appear in the AOA, bank angle, and sideslip angle state
responses, they are not a cause for alarm. However, they are a source of unnecessary wear on the actuators,
and are therefore undesirable. The cause of these oscillations is not immediately apparent from the design.
It is noted that very slight oscillations do appear in the yaw rate responses of some of the velocity vector
roll simulations. Because the roll and yaw channels of the aircraft are highly coupled at high AOA, the
oscillations in the yaw rate channel are likely the source of the result of the oscillations in the roll aileron
control effector commands.

The weighting matrix design, Eq. (80), Chapter 3, is the most obvious place to start the
investigation. Recall that the weighting matrix is based on the aileron-rudder interconnect concept.
Therefore, the weighting matrix should include off-diagonal terms to command the yaw control effer.ur
groups when a command is issued to the roll control effector groups. These off-diagonal terms are the
{5,1} and {6,1} elements of the weighting matrix. However, the implementation of the weighting matrix
also includes off-diagonal terms in the {1,3} and {2,3} elements of W; these elements correspond to a
rudder-aileron interconnect which has been inadvertently added to the design. This rudder-aileron
interconnect is undesirable for two reasons. First, this interconnect could conceivably allow small
oscillations in the yaw channe - be fed back into the roll aileron command signals. This is exactly the

situation encountered in the simulations. Second, the reverse interconnect closes a loop around the roll and
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yaw command inputs which could, under the right circumstances, introduce unstable oscillations between
the two channels, leading to a loss of control. While this is not observed in the simulations, small changes
in the aircraft or actuator dynamics could lead to this condition.

The apparent remedy to the situation is to zero out the W{1,3} and W{2,3} elements. The resulting

weighting matrix Is:

[ 0.2443 0 0
0.1396 0 0
0 0.0838 0

W= (121)

0 00698 0
-003913 0 01745
-011813 0 0.5236)

Velocity vector roll simulations with this new weighting matrix incorporated in the closed-loop
systems of the previous chapter, show that the oscillations in the roll aitcron control effector commands are
significantly reduced. Even though these simulations indicate that the rudder-aileron interconnect is the
likelv source of the oscillations, the modified closed-loop system is not valid. Recall that the QFT design
starts with the definition of the effect:ve plants. As shown in Eq. (76), the effective plant contains the
weighting matrix. A change in the weighting matrix then requires the re-design of the entire QFT
compensator and prefilter; simply changing the weighting matrix in the closed-loop system does not yield a

closed-loop system which meets the design specifications.

7.2. QFT Compensator and Prefilter

The QFT design process presented in this chapter is identical to that presented in Chapter 5. No
changes are nade to the stability and performance specifications, the loaded plants, and the actuator
models; only the weighting matrix is modified as described in the previous section. The Q matrices formed
with the new weighting matrix are not presented in this thesis, but are available in a supplementary
document from the thesis advisor. The Bode plot of the Q matrices appears in Fig. 44, and shows that the
change in the weighting matrix produced very little change in the frequency response of the system,

although the bandwidth of the roll rate channel does appear to be slightly higher.
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Figure 44. Q Matrix Frequency Response, Re-designed System

applied to this system.
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Because the Method 1 design technique is used, the diagonal dominance condition, described in Eq.
(95), must again be satisfied. Figure 45 shows that the diagonal dominance condition is satisfied (all plant

cases are positive) as the frequency approaches infinity. The Method 1 design technique is therefore
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Figure 45. Diagonal Dominance Condition, Re-designed System

The new channel 1 nominal plant (plant case 4) transfer function in pole-zero format is:

_ 1240.8763(~15.62475 + j41.9236)(~21.8558 + j32.8318)(55.2305 % j83.7803) (122)
T = (C10213)-14.924 £ 33.2)(—20.4535 + j30.9478)(—44.25 £ j60.5552)(~62.127 £ ;85.0196)

This transfer functior is similar to the one used in the previous roll rate channel design, Eq. (110), but the

gain is now significantly higher (nearly four times the previous value) and the poles and zeros are slightly

farther away from the origin. These differences are reflected in the Q matrix Bode plot as discussed earlier.
Using the same design technique as in Chapter 5, the following roll rate channel compensator is

realized:

_ 205128(~13)(~241% j18)
& =T 0)(50)(~60)

(123)

The corresponding Nichols plot of the nominal loop transmission, with the associated bounds appears in
Fig. 46. One benefit of the new weighting matrix is immediately apparent from this figure. The increased
phase margin frequency of the bare plant permits the compensated system to meet the yaw rate cross-
coupling disturbance bounds, which were violated in the previous design, while still meeting the 30 rad/sec

o, requirement. Therefore, no stability or performance bounds are viclated with the newly designed

weighting matrix.

95




The Bode plot used in the prefilter design shows that the same roll rate channel prefilter designed in
Chapter S may be used for this new system. This Bode plot is visually identical to that shown in Fig. 20,
and is therefore not included in this section. Additionally, the pitch rate channel compensator and prefilter
designs from the previous design are found to be acceptable for this new system, so a re-design is not

necessary for this channel.
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Figure 46. Roll Rate Channel, Bounds and Compensated System
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The yaw rate channel does have to be re-designed, however. The yaw rate channel nominal plant

(plant case 4) transfer function has changed to:

-518.8974(-15.6247 £ j41.9236)(-21.8559 + ;32.8318)(-55.2305 £ j83.7803)
(-0.1181)(—13.1446 1 j15.9248)(—15.7355 £ y42.0323)(—49.6517 £ j52.1523)(~55.2737 £ j83.7978)

(124)

9y, =

While this is only slightly different than the respective nominal plant transfer function in the previous
design, the changes are substantial enough to require a modified compensator. The following compensator,

obuained using the CAD package, satisfies all bounds as shown in Fig. 47.

.- -500(-6)(-14% j14.2829) (125)
(0)(~50)(-50)
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The prefilter from the previous design is satisfactory, so the re-design of the three-axis rate-
commanded QFT control system is complete, provided that the system satisfies all performance bounds.
The tracking validation results from the CAD package, Fig. 48, show that all performance bounds are met

with this new compensator and prefilter, so the control system is ready for simulation.
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Figure 48. Tracking Validation for Re-designed System
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7.3. Closed-Loop Simulations

The effects of the re-designed weighting matrix and compensator on the closed-loop system
performance can most easily be seen in simulations of the six DOF system containing no control effector
group limits, since the true (not limited) control effector group commands are used within the simulation.
The most realistic responses, however, are obtained through simulations with the control effector group
limited six DOF model. Therefore, velocity vector roll initiation and arrest simulations are performed with
each of these models, and these simulations are then compared to those obtained with the previous design.
The closed-loop systems used for these simulations are exactly the same as those used in the Chapter 6
simulations, but the re-designed weighting matrix (W) and compensator (G) replace those from the
previous design, The commanded inputs and the method of setting the ICs for the velocity vector roll

arrest are also identical to those presented in Chapter 6.

7.3.1. Six DOF Simulation, No Control Effector Limits. The response of the six DOF closed-loop
system with no control effector limits to a velocity vector roll command is shown in Figs. 49 and 50. The
benefit of the re-designed system is immediately apparent; the roll aileron control effector commands and
the yaw rate response contain none of the unwanted oscillations which are present in the previous
simulations. As anticipated from the design phase, the performance specifications are also easily met. In
fact, the response of the re-designed system is nearly identical to that of the previous system. The primary
difference between the two, other than the lack of oscillations, is a slight increase in the magnitude of the
yaw rate response, and a corresponding increase in the size of the yaw control effector group commands.
While this increase does not come close to violating the performance requirement, it is likely to have a
negative impact on the performance of the system when the control effector limits are enforced. From this
velocity vector roll initiation simulation, however, the re-design is shown to be successful, removing all the

unwanted control effector oscillations.
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Response to 20 Deg/sec Roll Rate Command : Re-designed System, No Limits, 10kft
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Figure 49. Response to Roll Command, Re-designed System, 10kft
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The system response to the velocity vector roll arrest command, using the final conditions of the roll

initiation simulation as ICs, is shown in Figs. 51 and 52. This simulation also demoastrates that the re-
designed weighting matrix and compensator eliminate all oscillations in the state responses and the control
effector commauds. As in the roll initiation simulations, the yaw control effector commands and the yaw
rate response are slightly larger than in the Chapter 6 simulations, but the yaw rate response still remains
well within the specification limits. The overall aircraft response to the maneuver is virtually identical to
the response of the previous design, and the re-designed weighting matrix and compensator is again shown

to be acceptable and beneficial to the performance of the closed-loop system.

7.3.2. Six DOF Simulation, Limited Control Effectors. The response of the control effector limited
six DOF system to the velocity vector roll initiation command is shown in Figs. 53 and 54. The control
effector limits have the same effect on the response of this system as they do on the previous system, Figs.
40 and 41; the yaw rate exceeds the 1 deg/sec design specification. Also, as predicted, the yaw rate of the
re-designed system exceeds the specification to a greater degree than the previous system, nearly doubling
the allowable 1 deg/sec yaw rate.

Not predicted, however, are the benefits of this increased violation. The final value of the sideslip
angle is slightly smaller due to the increased yaw rate response. As a result, the AOA, which has been
shown in this study to be dominated by the sideslip angle at small bank angles, actually decreases during
the velocity vector roll initiation, rather than increasing as in the roll initiation of the previous system. The
consequence of this phenomenon is not immediately apparent, until one considers the response
characteristics of the AOA throughout the remainder of the velocity vector roll maneuver; the AOA
increases significantly as the bank angle increases. Therefore, any slight decrease in the AOA during the
initiation transition region helps in controlling the maneuver after the initiation of the transition region.

This impact of this benefit on the velocity vector roll arrest simulation is seen in Fig. 55 and 56.
Although completely dominated by the bank angle, the AOA response is slightly smailer in magnitude than

in the previous design's velocity vector roll simulations, and the final sideslip angle is much closer to zero.
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Arrest 20 Deg/sec Roll Rate : Re-designed System, No Limits, 10kft
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Figure 51. Armesting a Velocity Vector Roll, Re-designed System, 10kft
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Response to 20 Deg/sec Roll Rate Command : Re-designed System, 10kft
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Figure 53. Response to Roll Command, Re-designed Limited System
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Arresting 20 Deg/sec Roll Rate : Re-designed System, 10kft
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Figure 55. Arresting a Velocity Vector Roll, Re-designed Limited System
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Based on the final conditions of the AOA and sideslip angle, the re-designed system is better suited
to the velocity vector roll maneuver. Moreover, the re-designing of the weighting matrix and compensator
has completely eliminated the oscillations in the state responses and control effector commands. These two

criteria indicate that the re-design is successful.
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8. Conclusions and Recommendations

8.1. Summary

This thesis develops an innovative approach to the design of a flight control system for performing
the velocity vector roll maneuver at high angles of attack. A six DOF aircraft model is developed from the
fundamental nine-state EOM using a modified linearization technique. This technique is based on the
time- ale separation of the velocity vector roll's states, and accounts for nonlinearities due to the "high"
stability axis roll rate and the bank angle achieved during the velocity vector roll maneuver.

The system nonlinearities, and changes in system parameters due to changes in flight condition, are
then jointly treated as structured uncertainty in the development of a three DOF model for use in the QFT
design process. The QFT robust control design technique is therefore used to jointly address nonlinearity
and structured uncertainty. A weighting matrix, based on the fundamentals of the aileron-rudder
interconnect, transforms this three DOF model to a square (mxm) plant. The MIMO QFT CAD package is
then used to design a three-axes rate-commanded control system to meet previously defined stability and
performance specifications.

Closed-loop control system models based on the three and six DOF models are formed in
MATLAB's Simulink environment, and velocity vector roll initiation and arrest simulations are performed
to demonstrate the accuracy of the models and the performance of the closed-loop control system. With all
performance specification met, the six DOF model is enhanced to include control effector limiting
(saturation), and the simulations are again performed. Despite slight violations in the yaw rate desigr.
specification, these simulations demonstrate the successful initiation and arrest of a realistic velocity vector
roll, with negligible excursions in AOA and sideslip angle.

The presence of small oscillations in the roll aileron control effector commands, however, leads to
the enhancement of the control system design. The weighting matrix is modified/simplified to remove
cyclic interactions between the roll and yaw controls, and the QFT controller is modified to account for the
changes in the weighting matrix. Velocity vector roll initiation and arrest simulations of the resulting six

DOF closed-loop system are then employed to demonstrate the removal of the oscillations and the




improvement in velocity vector roll performance. This improvement in the system performance illustrates
the dual purpose of the weighting matrix W = {w,}, i.e., to obtain a mxm effective plant matrix and to

provide an opportunity to optimize the system's performance by "fine tuning" the w;, elements.

8.2. Conclusions

This thesis has shown the effective application of QFT to a unique controls problem, the initiation
and arrest of the velocity vector roll maneuver at high angles of attack. Through simulation, several key
characteristics of the velocity vector roll have been identified. In particular, the stability axis roll rate, and
subsequently the bank angle, achieved in the velocity vector rol! maneuver is shown to be driven primarily
by the differential aileron and elevator control inputs, as expected. However, the rudder and thrust
vectoring yaw control inputs have been shown to contribute very little to the development of the desired
roll rate. This ts expected at low angles of attack, but not immediately obvious for high angles of attack
where the velocity vector roll maneuver includes a fair amount of body axis yaw. Simulation also revealed
the dependence of the AOA state on the nonlinear Pf term at small bank angles. This enforces the
requirement for strict control over the sideslip angle in the transition region of the velocity vector roll. For
bank angles greater than ten degrees, the trigonomeitric force term is shown to dominate the AOA state
response. It is this term which limits the application of the three-axis rate-commanded control system
developed in this thesis to the transition region of the large-amplitude velocity vector roll maneuver.

Most importantly, this thesis demonstrates that the QFT robust control design technique can be used
to jointly address system nonlinearity and structured uncertainty in the design of a control system for a
large-amplitude maneuver such as the velocity vector roll with excellent results. The closed-loop control
system is shown to effectively initiate and arrest the velocity vector roll maneuver, with truly negligible

excursions in the AOA and sideslip angle.

8.3. Recommendations
In this thesis, the QFT design technique is successfully employed to attack the nonlinearities

associated with the thirty-degree angle of attack (AOA) velocity vector roll maneuver over the operating
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range of the aircraft at this AOA. Specifically, this thesis produced a flight control system capable of
controlling the .ransition regions of the maneuver-- initiating and arrestii.g the velocity vector roll.

While this control system has been shown to produce superb results in these transition regions of the
maneuver, it has been shown (not in this thesis) to be unacceptable in the so called "free-stream" or steady-
state region of the velocity vector roll. In this region, the rol! - e is maintained at the constant value
achieved in the initiation region as the aircraft rolls tluough the desired bank angle. The most logical
extension of th:3 thesis would therefore be the design of the compensator for the "free-stream" region of the
velocity vector roll maneuver. This design could be accomplished using optimal control techniques, or
perhaps through an innovative inner- or outer-loop modification to the present design.

A second course of study based on this thesis is the extension of the present design to include a
range of AOAs above 30 degrees. This would require the formation of additional linear models from
NASA's HARV Simulation, and the re-application of QFT to the problem.

A third course of study, most likely following the previous two, is the design of a controi system to
perform the velocity vector roll maneuver in the presence of aerodynamic or mass asymmetries (such as an
asymmetric weapons load). The NASA HARYV Simulation provides the capability to model these effects,
so sufficient data should be available to construct an appropriate model.

A final course of study, is the design of a digital control system equivalent to the present design, and
the incorporation of this design into NASA's HARV Simulation. This is not a trivial procedure, according
to *he HARV Program Office, and would require the use of the Ada programming language, but should be
easily achievable in the time allotted to a Master's thesis. This study would familiarize the student with the
procedures required to code a flight control algorithm, and also introduce the student to the real-time

programming aspects of the Ada language.
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Appendix A: F-18 HARV Descriptive Data

This appendix presents the F-18 HARV data obtained from NASA's F-18 HARV Batch Simulation.

This data includes the aircraft weight, moments/products of inertia, and nondimensional stability and

control derivatives for each trimmed F.C. The artificial stability derivatives calculated from the

nondimensional stability derivatives are also presented for each F.C. This appendix concludes with a

listing of the system (A, B) matrices for each of the twelve plant cases.

A.l. F-18 HARYV General Information

All simulations are based on a single aircraft configuration, called 60% Fuel Batch. This section

lists the elements of this configuration, and general properties of the aircraft, which are not a function of

F.C.

o Wing Span - 374 f

e Wing Area (S) - 400 fi?

¢ Mean Aerodynamic Chord (MAC) - 11.52 ft
» Empty Weight - 29,615 Ibs

o Fuel Weight (60% full) - 6,149 lbs

o Take-Off Weight - 35,764.60 lbs

¢ Moments/Products of Inertia (body axes), no fuel -

e Moments/Products of Inertia (body axes), with fuel -

¢ Center of Gravity (CG) Parameters -

I,=21500.0  slugft?
[,=1701052  slug ft?
I,=184471.0 slugfi
I,=-17747 slug fi?
1,=22632.600 slug fi
1,=174246.297 slug fi?
I,=189336.406 slug ft?
I,=-2131.800 slugfi?

CG Percent Chord = 23.3 %

CG Butiline = 0.0 in

CG Waterline = 105.388 in

CG Fuselage Station = 456.249 in




A.2. F-18 HARYV Batch Simulation Nondimensional Derivatives, Baseline, 20,000 ft.
Trimmed at 5 degrees AGA, 20,000 feet altitude, the nondimensional derivatives (in body axes), as

output from the F-18 Batch Simulation, are:

ACOF 6 9 0(1P6E12.5}
CcL CcM CN CDrag CLift cy

Q 0.00000E+00 -3.71272E+00 .00000E+00 .20518E-03 .40643E+00 0.00000E+00
ALP -7.10861E-11 -3.11500E-01 .43670E-11 .18516E-01 .94306E+00 -6.03242E-12
\' 1.27650E-14 -1.34003E-04 .41471E-15 2.03717E-0S .50386E-04 -5.42413E-14
THA  0.00000E+00 -1.12700E-04 .00000E+00 .26894E-07 .32230E-04 0.00000E+00
-1.20563E-16 1.25263E-07 .36104E-18 .28408E-08 .98023E-08 -8.32667E-17
p -4.06333E-01 -5.36539E-05 .85787E-02 .00000E+00 .26245E-04 2.15190E-02
R 1.37166E-01 0.00000E+00 -1.82833E-01 .00000E+00 .00CO0E+00 2.16500E-01
BTA -1.01383E-01 0.00000E+00 .25369E-01 .00000E+00 .00000E+00 -1.13102E+00
PHI 0.00000E+00 -4.10885E-06 .00000E+00 .00000E+00 .53788E-06 0.00000E+00

1
O 2 N O WO
O O O O NN W
W OO NN W N

BCOF 6 12 0(1P6E12.5)

CL cM CN CDhrag CLift cYy
.00000E+00 -1.84000E-01 1.15667E-10 -7.00960E-04 4.67127E-01 -2.00939E-10
.00000E+00 -1.18726E+00 3.855562-11 1.15982E-01 9.52633E-01 -6.69800E-11
.00000E+00 0.00000E+00 -1.92778E-11 0.00000E+00 .00000E+00 3.34898E-11
.01774E-12 -1.27762E-01 -3.54012E-11 -6.28605E-02 .12713E-01 5.62960E-11
.03549E-12 1.38977E-01 5.21495E-12 .11556E-01 .71530E-01 -1.08125E-11
.70909E-16 -7.05745E-02 -1.81786E-06 .68749E-02 .53596E-02 3.15803E-06
.24927E-02 .00000E+00 -2.21591E-03 .00000E+00 .00000E+00 -2.23350E-02
.07091E-02 .00000E+00 1.05630E-02 .00000E+00 .00000E+00 -4.19262E-02
.75819E-02 .00000E+00 -7.87271E-02 .00000E+00 .00000E+00 2.47648E-01
.00000E+00 .00000E+00 0.00000E+00 .00000E+00 .00000E+00 0.00000E+00

0
1

PITAIL
PITEL

PITRUD
PITLEF
PITTEF
PITVEC
ROLAIL
ROLEL

YAWRUD
ROLLEF
ROLTEF
YAWVEC

- O O O
(=

U
[
1
—

.07203E-02 .00000E+00 0.00000E+00 .00000E+00 .00000E+00 .00000E+00
.31685E-12 .00000E+00 -6.20600E-03 .00000E+00 .00000E+00 .07812E-02

N OO Y Oy
o O O O O O

O OO O O O o
O O O O O O » W

XZERO 11 1 0(1P6E12.5)
Q ALP v THA H P
0.00000E+00 8.72665E-02 5.53012E+02 8.72665E~02 2.00000E+04 0.00000E+00
R BTA PHI PSI Y
0.00000E+00 1.85970£-10 0.00000E+00 0.00000E+0C 0.00000E+00

UZERO 12 1 0(1P6E12.5)
PITAIL PITEL PITRUD PITLEF PITTEF PITVEC
0.00000E+00 3.75194E-01 C.00000E+00 6.63998E+00 7.00000E+UG 0.00000E+00
ROLAIL ROLEL YAWRUD ROLLEF ROLTEF YAWVEC
0.00000E+00 0.00000E+00 8.98123E-09 0.00000E+00 0.00000E+00 0.00000E+00

The following engine data can also be extracted from the Batch Simulation:
e Cockpit Throttle Positions - Left =39.2, Right=39.2

o Thrust (in body axes) - x =3529.2 Ibs, y=0.0lbs, z=0.0 lbs




From this data, the artificial stability derivatives, as defined in Eqs. (38) to (42), can be calculated using the
coef.m script file (listed in section A.7.):

CYDTVY = 1.11917244826245030E-01;
CYDRY = 3.12788148676786601E-02;
CYDER = -5.29542676664163971E-03;
CYDAR = -2.82098918654543089E-03;
CYB = -1.42851810600699042E-01;
CYR = 9.29148030432670573E-04;
cyYp = 1.09672683398896138E-05;
CZDTVP = 1,11491365556130081E-01;
CZDEP = -1.20320904040575060E-01;
CZDAP = -5.89997857955409655E-02;
Cza = -6.24325892475722233E-01;
CZQ = -3.16575007501449651E-03;
CNDTVY = -7.20843215984005514E+00;
CNDRY = -1.43616956742789847E+00;
CNDER = -4.77809549704238612E-01;
CNDAR = -8.23752335045641604E-01;
CNB = 3.16897639924039964E+00;
CNR = -1.43471934732934181E-01;
CNP = 1.12678127324830402E-01;
CNPQ = -7.86130642208682451E-01;
CMDTVP = -7.78805531720038324E+00;
CMDEP = -6.09441174369732330E+00;
CMDAP = -9.44503950979825424E-01;
CMPP = ~9.51143618349126752E-02;
CMPR = 9.37930013834121779E-01;
CMQ = -1.98502546087914816E-01;
CMA = -1.59898359092508491E+00;
CLDTVY = 4.79222221794896874E-02;
CLDRY = 2.25545361510145348E+00;
CLDER = 6.48073947496023539%+00;
CLDAR = 7.98827233307S07889E+00;
CLB = =1.55558538023918231E+01;
CLR = 5.72017749256467534E-01;
CLPQ = -1.46051082571169583E-01;
CLP = -1,74169506105079064E+CO;
CALP = .26194694832095329E~01;
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CBAR = 1.15199999999999996E+01;
UBAR = 5.53011999999999944E+02;
ALPHA = §.72664999999999969E-02;




A.3. F-18 HARV Batch Simulation Nondimensional Derivatives, 10,000 ft.
Trimmed at 30 degrees AOA, 10,000 feet altitude, the nondimensional derivatives (in body axes), as

output from the F-18 Batch Simulation, are:

ACOF G ¢ 0(1PSE12.5)
CL cM CN CDrag CLift cy
Q 0.00000E+00 -5.07495E+00 0.00000E+00 0.00000E+00 3.48158E+00 0.00000E+00
ALP  1.15422E-09 -2.12670E-01 -5.887S2E-10 3.24937E+00 2.24708E+00 -3.93562E-10
v -1.74347E-13 -7.21766E-05 -5.36515E-14 1.41591E-04 1.82152E-04 5.41067E-13
THA 0.00000E+00 -1.14109E-03 0.00000E+00 0.00000E+00 1.991C3E-33 0.00000E+00
-1.49186E-16 4.37722E-07 2.77556E-17 1.49912E-07 -5.55651E-u7 3.33067E-16
P -4.55C008E-01 -9.10769E-05 2.84673E-02 0.0000CE+00 1.59697E-04 7.42491E-03
3.21637E-01 C.00000E+00 -2.52124E-0. 0.0CC00E+00 0.00000E+0C -3.04499E-01
BTA -8.02402E-02 0.00000E+00 1.22902E-02 0.00000E+00 0.00000E+00 -7.95848E-01
PHI  0.00000E+00 -1.73959E-05 ©0.00000E+00 0.00000E+00 3.07364E-05 0.00000E+00
BCOF 6 12 0(1P6E12.5)
cL cM CN CDrag CL1ft cy
PITAIL -1.72190E-10 -6.79479E-02 2.75504E-09 0.00000E+00 1.66584E-01 -6.19884E-09
PITEL 7.97951E-11 -7.92848E-01 -1.27673E-09 5.80181E-01 5.79326E-01 2.87263E-09
PITRUD -2.51984E-11 5.33617E-08 4.03177E-10 0.00000E+00 0.00000E+00 -9.07149E-10
PITLEF 2.88305E-10 -4.25398E-02 6.34661E-10 -1.80194E-01 2.05452E-01 -9.09670E-10
PITTEF  5.02948E-10 6.37031E-02 -1.74676E-09 2.637S56E-01 3.74769E-01 3.62860E-09
PITVEC  1.04S94E-11 -1.04696E-01 -1.67991E-10 5.89797E-02 7.00857E-02 3.77980E-10
ROLAIL  2.73366E-02 5.33617E-08 -8.48735E-03 0.00000E+00 0.00000E+00 4.07787E-02
ROLEL 3.71075E-02 1.06723E-07 -1.03387E-02 0.00000E+00 0.00000E+00 4.21615E-02
YAWRUD  1.88148E-03 0.00000E+Ot -3.79409E-02 0.00000E+00 0.00000E+00 1.01513E-01
ROLLEF  0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
ROLTEF  4.82789E-02 5.33617E-08 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
YAWVEC  7.26265E-04 0.00000E+00 -1.16202E-02 0.00000E+00 0.00000E+00 2.61455E-02
XZERO 11 1 0(1P6E12.5)
Q ALP v THA H P
0.00000E+00 5.23599E-01 2.18609E+02 5.23599E-01 1.00000E+04 0.00000E+00
R BTA PHI PSI Y

0.00000E+00 1.17521E-09 0.00G00E+00

UZERO 12 1 0(1P6E12.5)
PITAIL PITEL PITRUD
0.00000E+00 -5.02130E+00 0.00000E+00
ROLAIL ROLEL YAWRUD

G.0COCCE+GC 0.COOVOE+00 -1.7788BE-07

0.00000E+00

PITLEF
3.30000E+01

ROLLEF
0.00000E+00

0.00000E+00

PITTEF
0.00000E+00

ROLTEF
0.00000E+00

PLTVEC
0.00000E+00

YAWVEC
0.00000E+00

The following engine data can also be extracted from the Batch Simulation:

» Cockpit Throttle Positions - Left = 64.3, Right=64.3

o Thrust (in body axes) - x = 14757.4 Ibs, y=0.0lbs, z=0.0 lbs
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From this data, the artificial stability derivatives, as defined in Egs. (38) to (42), can be calculated using the
coef.m script file (listed in section A.7.):

CYDTVY = 6.07323504920353266E-02;
CYDRY = 7.0184495A505434051E-03:
CYDER = 2.91497996647757966E-03;
CYDAR = 2.81937534383262670E-03;
CYB = -5.50236821830639086E-02;
CYR = ~1.53763068401784899E-03:;
CYp = 9.38457290429957716E-04;
CZDTVP = 5.25957515434202355E-02;
CZDEP = -4.00536907856596791E-02;
CZDAP = -~1.15173564208033690E-02;
cza = -1.55359585950984674E-01;
czQ = -6.34235205542322744E-03;
CNDTVY = -1.41606209428348504E+00;
CNDRY = -1.41754003974047776E-01;
CNDER = -5.57081131379304040E~01;
CNDAR = -4.13036412923716702E-01;
CNB = 5.27025869224455823E-01;
CNR = -2.60164532435097628E-01;
CNP = 3.89255881241448110E-01;
CNPQ = -4.17016401506588308E-01;
CMDTVP = -1.67065042890981963E+00;
CMDEP = -8.60670460478496397E-01;
CMDAP = -7.54743764019671221E-02;
CMPP = -4.20386456347477622E-01;
CMPR = 4.57165820505391451E-01;
CMQ = -1.48528470227803383E-01;
CMA = -2.36227103845834036E-01;
CLDTVY = -6.26816425598615390E-01;
CLDRY = -7.75106600801798475E-03;
CLDER = 8.72972801702200707E-01;
CLDAR = 6.41896658951537580E-01;
CLB = ~1.30196038910815171E+00;
CLR = 4.06908064564558858E-01;
CLPQ = -6.45516574609137028E-01;
CLpP = -8.82656865723266513E-01;
CALP = 8.66025291583566226E-01;
CBAR = 1.15199999999999996E+01;
UBAR = 2.18609000000000009E+02;
ALPHA = 5.23599000000000037E-01;




-

A.4. F-18 HARYV Batch Simulation Nondimensional Derivatives, 15,000 ft.
Trimmed at 30 degrees AOA, 15,000 feet altitude, the nondimensional derivatives (in body axes), as

output from the F-18 Batch Simulation, are:

0.00000E+00 -5.06074E-10 0.00000E+00

UZERO 12 1 0(1P6E12.5)
PITAIL PITEL PITRUD
0.00000E+00 -5.00296E+00 0.00000E+00
ROLAIL ROLEL YAWRUD

0.00G00E+00 0.00000E+00 -1.31265E-07

0.000002+00

PITLEF
3.30000E+01

ROLLEF
0.0000CE+00

0.00000E+00C

PITTEF
6.30319E-06

ROLTEF
0.00000E+00

PITVEC
0.00000E+00

YAWVEC
0.00000E+00

ACOF 6 9 0(1P6E12.5)
CL CcM CN CDrag CL1ft cy

Q 0.00000E+00 -5.06097E+00 0.00000E+00 0.00000E+00 3.40663E+00 0.00000E+00
ALP -4.20491E-10 -2.14963E-01 9.60210E-11 3.23240E+00 2.22478E+00 9.30845E-10

v 7.60607E-14 -6.60131E-05 -4.08562E-14 1.43826E-04 1.63794E-04 -1.53925E-13
THA 0.00000E+00 -9.35965E-04 0.00000E+00 0.00000E+00 1.567552-03 0.00000E+00

H 6.59195E~17 3.56697E-07 1.73472E-17 1.19209E-07 -5.36442E-07 -2.91434E-16

P -4.55000E-01 -9.4475S5E-05 2.82338E-02 0.00000E+00 1.7275S5E-04 3.32254E-C3

R 3.19054E-01 0.00000E+00 -2.56602E-01 0.0000CE+0C 0.0C00CE+C0 -3.00852E-01
BTA -8.28843E-02 0.00000E+00 1.21966E-02 0.0Q000E+0C 0.09000E+00 -7.88583E-01
PHI 0.00000E+00 -1.54749E-05 0.00000E+00 0.00000E+00 2.39061E-05 0.09000E+00
BCOF 6 12 0(1P6E12.5)

CL cM CN CDhrag CLifec cY
PITAIL 3.37922E-11 -6.80724E-02 -5.40674E-10 0.00000E+00 1.67424E-01 1.21652E-09
PITEL 6.75843E-11 -7.98659E-01 -1.08135E-09 5.79169E-01 S.72697E-01 2,43303E-09
PITRUD 5.91363E-11 5.33617E-08 -9.46181E-10 0.00000E+00 0.00000E+00 2.12891E-09
PITLEF -1.13537E-10 -3.87360E-02 -3.02435E-10 -1.79138E-01 2.04957E-01 4.65040E-10
FITTEF -1.21885E-10 6.62973E-02 -6.21136E-10 2.56121E-01 3.74253E-01 1.52065E-09
PITVEC -1.05601E-11 -9.06547E-02 1.68961E-10 5.i3754E-0" 6.11227E-02 -3.80162E-10
ROLAIL 2.69037E-02 0.00000E+00 -8.47069E-03 0.00000E+00 0.00000E+00 3.94373E-02
ROLEL 3.64862E-02 -5.33617E-08 -1.03963E-02 0.00000E+00 0.00000E+00 3.99876E-02
YAWRUD 1.88945E-03 5.33617E-08 -3.76628E-02 0.00000E+00 0.00000E+00 1.0131%E-01
ROLLEF 0.00000E+00 0.00000E+00 0.00000E+00 0.000C0E+00 O0.00000E+00 0.00D00E+00
ROLTEF 4.77594E-02 0.00000E+00 O0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
YAWVEC 6.21646E-04 0.00000E+00 -9.94633E-03 0.00000E+00 O0.00000E+00 2.23792E-02
XZERO 11 1 0(1P€E12.5)
Q ALP v THA H P
0.00000E+C0 5.23599E-0i 2.36485E+02 5.23599E-01 1.50000E+04 0.00000E+00
R BTA PHI PSI Y

The following engine data can also be extracted from the Batch Simulation:

¢ Cockpit Throttle Positions - Left = 72.4, Right=72.4

o Thrust (in body axes) - x = 14795.9 ibs, y =0.0 lbs, z=0.0 lbs
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From this data, the artificial stability derivatives, as defined in Egs. (38) to (42), can be calculated using the
coef.m script file (listed in section A.7.):

CYDTVY = 5.62893535363834657E-02;
CYDRY = 6.46025682908673606E-03;
CYDER = 2.5496714927978835SE-03;
CYDAR = 2.51458350996103730E-03;
cYB = -5.02812770660163028E-02;
CYR = -1.30530668481651816E-03;
cYp = 7.72963122386306377E-04;
CZDTVP = 4.87480038093969434E-02;
CZDEP = -3.65160503483797361E-02;
CZDAP = -1.06752143166929953E-C2;
CZa = -1.41855428776592629E-C1;
czQ = -5.25057335148337346E-03;
CNDTVY = -1.41826673391359392E+00;
CNDRY = -1.40690802118758979E-01;
CNDER = -5.47160656642931120E-01;
CNDAR = -4.05893637928946560E-01;
CNB = 5.36251727364312036E-01;
CNR = -2.43489795403019987E-01;
CNP = 3.60744643563561673E-0";
CNPQ = -4.17016401506588308E-01;
CMDTVP = -1.67504824526445262E+00;
CMDEP = -8.85033712921329485E-01;
CMDAP = -7.54344080758695690E-02;
CMPP = -4.20386456347477622E-01;
CMPR = 4.57165820505391451E-01;
CcMQ = -1.36600117052837783E-01;
CMA = -2.38211179027229047E-01;
CLDTVY = -6.31048958702400076E-01;
CLDRY = -7.15697473992911622E-03;
CLDER = 8.56012853795270368E-01;
CLDAR = 6.30079020518260258E-01;
CLB = -1.33173714977577773E+00;
CLR = 3.79247861782185947E-01;
CLPQ = -6.45516574609137028E-01;
CLP = -8.15887876688384250E-01;
CALP = 8.66025291583566226E-01;
CBAR = 1.15199999999999996E+01;
UBAR = 2.36485000000000014E+02;
ALPHA = 5.23599000000000037E-01;

115




A.5. F-18 HARV Batch Simulation Nondimensional Derivatives, 20,000 ft.
Trimmed at 30 degrees AOA, 20,000 feet altitude, the nondimensional derivatives (in body axes), as

output from the F-18 Batch Simulation, are:

ACOF 6 9 0(1P6E12.5)
CL CcM CN CDhrag CLift cYy
Q 0.00000E+00 -5.04509E+00 0.00000E+00 0.00000E+00 3.32137E+00 ©0.00000E+00
ALP 1.50425E-09 -2.18009E-01 -5.85953E-10 3.21220E+00 2.20005E+00 -1.56396E-09
v -2.51910E-13 -6.12410E-05 1.01212E-14 1.46121E-04 1.49667E-04 6.50813E-13
THA  0.00000E+00 -7.62326E-04 0.00000E+00 0.00000E+00 1.22262E-03 0.00000E+00
-2.63678E-16 2.76603E-07 1.73472E-18 1.19209E-07 -4.17233E-07 6.10623E-16
P -4.55000E-01 -9.08667E-05 2.79639E-02 0.00000E+G0 1.40697E-04 -1.40942E-03
3.16091E-01 0.00000E+00 -2.61805E-01 0.CC000E+00 0.00CGOCE+00 -2.96541E-01
BTA -8.59409E-02 0.00CG00E+00 1.20974E-02 0.00000E+00 0.00000E+00 -7.80454E-01
PHI 0.000002+00 -1.36606E-05 0.00000E+00 ©0.00000E+00 2.35061E-05 0.000C0E+00
BCOF 6 12 0(1P6E12.5)
CL cM CN CDrag CLift cYy
PITAIL -1.36602E-10 -6.83410E-02 2.18564E-09 0.00000E+00 1.58698E-01 -4.91768E-09
PITEL 3.41502E-11 -8.07822E-01 -5.46409E-10 5.77036E-01 5.67342E-01 1.22942E-09
PITRUD 9.81830E-11 0.00000E+00 -1.57093E-09 0.00000E+00 0.00000E+00 3.53459E-09
PITLEF 3.75575E-10 -3.44516E-02 3.22622E-10 -1,77917E-01 2.04346E-01 -5.76549E-11
PITTEF 4.97325E-10 6.97972E-02 -1.65775E-10 2.47293E-01 3.73047E-01 0.00000E+00
PITVEC 0.00000E+00 -9.07701E-02 0.00000E+00 5.15769E-02 6.15385E-02 0.00000E+00
ROLAIL  2.64623E-02 0.00000E+00 -8.50624E-03 0.00000E+00 0.00000E+00 3.81613E-02
ROLEL 3.58307E-02 0.00000E+00 -1.04212E-02 0.00000E+00 0.00000E+00 3.74159E-02
YAWRUD 1.90066E-03 0.00000E+00 -3.74120E-02 0.00000E+00 €.00000E+00 1.01232E-01
ROLLEF  0.00000E+00 0.00000E+00 0.000COE+00 0.00000E+00 0.00000E+00 0.00000E+00
ROLTEF 4.72042E-02 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00CO0E+00
YAWVEC  5.50954E-04 0.00000E+00 -8.81526E-03 0.00000E+00 0.00000E+00 1.98343E-02
XZERO i1 1 0(1P6E12.5)
Q ALP v THA H P
0.00000E+00 5.23599E-01 2.56800E+02 5.23599E-01 2.00000E+04 0.00000E+00
R BTA PHI PSI Y

0.00000E+00

1.63791E-09 0.00000E+00

0.00000E+00 0.00000E+00

UZERO 12 1 0(1P6E12.5)
PITAIL PITEL PITRUD PITLEF PITTEF PITVEC
0.00000E+00 -5.01436E+00 (0.00000E+00 3.30000E+01 6.30319E-06 0.00000E+00
ROLAIL ROLEL YAWRUD ROLLEF ROLTEF YAWVEC

0.00000E+00 0.00000E+0C

1.83643E-08

0.00000E+00 0.00000E+00

0.00000E+00

The following engine data can also be extracted from the Batch Simulation:

e Cockpit Throttle Positions - Left = 87.0, Right=87.0

e Thrust (in body axes) - x = 148354 lbs, y =0.01lbs, z=0.0lbs
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From this data, the artificial stability derivatives, as defined in Eqs. (38) to (42), can be calculated using the
coef.m script file (listed in section A.7.):

CYDTVY = 5.19705693029802809E-02;
CYDRY = 5,93736496950251179E-03;
CYDER = 2.19448251503881215E-03;
CYDAR = 2.23820102152161608E-03;
CYB = -4.57744610390796725E-02;
CYR = ~1.09983602696355344E-03;
cyp = 6.28040194070461264E-04;
CZDTVP = 4.50078274343774370E-02;
CZDEP = ~3.32752145223594725E-02;
CZDAP = -9.89421795899651037E-03;
CZa = -1.29035283321024985E-01;
CzZQ = ~4.36938839968372197E-03;
CNDTVY = -1.42090693238723520E+00;
CNDRY = -1.39931739907884517E-01;
CNDER = -5,37362629128103175E-01;
CNDAR = -3.99310273294799345E-01;
CNB = 5.47856597658433531E-01;
CNR = -2.27787006386213520E-01;
CNP = 3.33720585358794453E-01;
CNPQ = ~4.17016401506588308E-01;
CMDTVP = -1.67938378549336464E+00;
CMDEP = ~8.94175076588127782E-01;
CMDAP = ~7.56463910479155538E-02;
CMPP = -4.20386456347477622E-01;
CMPR = 4.57165820505391451E-01;
CcMQ = -1.25257363524697934E-01;
CMA = -2.41313326787214427E-01;
CLDTVY = -6.34422020472934722E-01;
CLDRY = -6.53432305109070272E-03;
CLDER = 8.39389853231515937E-01;
CLDAR = 6.18798723580269661E-01;
CLB = -1.36833774347255410E+00;
CLR = 3.53140735752541457E-01;
CLPQ = -6.45516574609137028E-01;
CLP = ~7.52518470968063458E-01;
CALP = 8.66025291583566226E-01;
CBAR = 1.15199999999999996E+01;
UBAR = 2.56800000000000011E+02;
ALPHA = 5.23599000000000037E-01;
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A.6. System Matrices

This section lists the system matrices for the twelve F.C.s. The elements of these system matrices
are described in Egs. (63) and (64), and are obtained from the artificial stability and control aerivatives in
this appendix. The C and D matrices are not listed here since they are simply the identity matrix and the

zero matrix, respectivley, and do not change.

Table 8. A Matrices for 12 Plant Cases

Altitude
Nonlinearity 10,000 feet 15,000 feet 20,000 feet
[-08827 0 04096 -08159 0 03792 (07525 0 03531]
P_ =0 deg/sec 0 01485 0 0 -01366 0 0 -01253 0O
naram
03893 0 -02602] 03607 v ~02435 03337 0 -0.2278]

[-0.8827 -0.0901 040967 | [-08159 -0.0901 037927 | [-0.7525 -00%01 0353117
P, =8deg/sec 00587 -01485 00638 00587 -~0.1366 0.0638 00587 -01253 0.0638
| 03893 00582 -02602f | [ 03607 -00582 -0.2435] [ | 03337 -0.0582 -0.2278]

[~0.8827 -0.803 0.4096 ] -08159 -0.1803 0.3792] [-0.7525 -01803 03531 ]
PMMM =16 deg/sec 01174 -0.1485 01277 01174 -~0.1366 0.1277 01174 -0.1253 0.1277
[ 03893 -0.1165 -0.2602] | 03607 -0.1165 -0.2435] | 0.3337 01165 -0.2278]

[-0.8827 —0.2704 040967 | [-08159 -02704 037927 | [-0.7525 -02704 0.3531]
P,,.. =24 deg/sec 01761 -0.1485 01915 01761 ~0.1366 0.1915 01761 -01253 0.915
03893 -01747 -02602) | [ 03607 -01747 -0.2435; [ | 03337 -01747 -0.2278]

Table 9. B Matrices for Flight Conditions

Altitude (feet) B
[ 0.6419 08730 0 06 -06268 —0.0078]
10’000 0 0 -0.8807 -1.6707 0 0
[-04130 05571 0 0 -14161 -0.1418]
[ 06301 08560 0 0 -06310 -000727
15,000 0 0 -08850 -16750 0 0
| -04059 -0.5472 0 0 -1.4183 -01407]
[06188 0.8394 0 0 -0.6344 -0.0065]
20,000 0 0 -0.8942 -16794 0 0
[-03993 -0.5374 0 0 ~14209 ~0.1399
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A.7. Plant Generation Script File

This Matrix, script file, coef.m, generates the linear models from the HARV Simulation output.

Not all portions of this file are applicable to all aspects of this thesis.

// Set up initial values
//
alpha = xzero(2):

gbar = 0.5*2.377e-3*(1-(0.703e-5) *(xzero(5)))**4.14* (xzero(3))**2;

ubar = xzero(3);

mass = 1111.5961;

cbar = 11.52;

b = 37.4;

s = 400;

Ixxo = 22632.6;

Iyyo = 174246.297;

Izz0 = 189336.406;

Ixzo = -2131.8;

calp = cos{alphe);

salp = sin(alpha);

IF xzero(5) = 10000, bCndtvy = -0.46340002; bCydtvy = 0.87841667:...
bCmdtvp = -1.50404937; bCzdtvp = 0.87841£67;...

ELSEIF xzero(5) = 15000, bCndtvy = -0.46571782; bCydtvy = 0.88281023;. .
bCmdtvp = -1.51157220; bCzdtvp = C.%$5281026;...

ELSEIF xzero{5) = 20000, bCndtvy = -0.46745201; bCydtvy = 0.568609757;...
bCmdtvp = -1.51720083; bCzdtvp = 0.88669757;...

ELSEIF xzero(5) = 25000, bCndtvy = -0.44564519; bCydcvy = 0.84476077;...
bCmdtvp = -1.44642280; bCzdtvp = 0.84476077;...

END

L ettt e e

// Transform to new axis system

//

dClp = acof(1,6)*calp**2-(acof(1l,7)+acof(3.6))*salp*calp+acof (3, ) *salp**2;

dClr = acof(1,7)*calp**2~(acof(3,7)-acof(1,6))*salp*calp-acof(3,6)*salp**2;

dClb = acof(1,8)*calp-acof(3,8)*salp;

dCldar = bcof(l,7)*calp+bcof(3,7)*salp;
dClder = bcof(1,8)*calp+beof(3,8)*salp;
dCldry = bcof(1,9)*calp+becof (3,9) *salp;

dCldtvy = bcof(i,12)*calp+bCndtvy*salp;

dCma = acof(2,2);
dCmg = acof(2,1);
dCmdap = bcof(2,1);
dCmdep = bcof(2,2);
dCmdtvp = bCmdtvp:;

dCnp = acof(3,6)*calp**2-(acof(3,7)-acof(l,6))*salp*rcalp-acof(l,7)*salp**2;
dCnr = acof(3,7)*calp**2+(acof(l,7)+acof(3,6))*salp*caip+acof(l,6)*salp**2;

dcnb = acof(3,8)*calp+acof(l,8)*salp;

drtndar = bcof(3,7)*calp-bcof(l,7)*salp;
dCnder = becof(3,8)*calp-bcof (1,8)*salp;
dCndry = bcof(3,9)*calp-bcof(1,9)*salp;

dCndtvy = bCndtvy*calp-bcof{1,12)*salp;

dCzq = -acof(5,1);

dCza -acof (5,2);
dCzdap = -bcof(5,1);
dCzdep = -bcof(5,2);

dCzdtvp = bCzdtvp*calp;
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= acof (6,6)*calp-acof(6,7)*salp;
dCyr = acof(6,7)*calp+acof(6,6)*salp;

dCyb = acof(6,8);

dCydar = bcof(6,7);
dCyder = rcof(6,8);
dCydry = bcof(6,9);

IXx = Ixxo*calp**2-Ixzo*2*calp*salp+izzo*salp**2;
Iyy = Iyyo;

Izz = Izzo*calp**2+Ixzo*2*calp*salp+Ixxo*salp**2;
Ixz = (Ixxo-1zz0)*salp*calp+Ixzo*(caip**2-salp**2);

// Completely non-dimensionalize the transformed derivatives
17

d = Ixx*Izz-Ix2**2;

nl = (gbar*s*b**2)/(2*d*ubar);

n2 = (gbar*s*cbar**2)/(2*Iyy*ubar);
n3 = {gbar*s*cbar)/(2*mass*ubar**2);
nd4d = (gbar*s*b)/{2*mass*ubar**2);

Clp = nl*(Izz*dClp+Ixz*dCnp);

Clpg = (Ixz/D)*(Ixx-Iyy+Izz);

Clr nl*(Izz*dClr+Ixz*dCnr);
(gbar*s*b) /d* (1z2z*dClb+Ixz*dCnb) ;
(gbar*s*b) /a* (Izz*dCldar+Ixz*dCndar) ;
Clder (gbar*s*b) /d*(Izz*dClder+Ixz*dCnder) ;
Cldry (gbar*s*b) /d* (1z2z*dCldry+Ixz*dCndry);
Cldtvy = (qbar*s*b)/d*(Izz*dCldtvy+Ixz*dCndtvy);

Cldar

Cma = (gbar*s*cbar)/Iyy*dCma;

cmg = n2*dCmq;

Cmpr = (I22-Ixx)/Iyy;

Cmpp = Ixz/Iyy:;

Cmdap = (gbar*s*cbar)/Iyy*dCmdap:
Cmdep = (gbar*s*cbar)/Iyy*dCmdep;
Cmdtvp = (gbar*s*cbar)/Iyy*dCmdtvp;

Cnpg = (Ixx**2-Ixx*Iyy+Ixz**2)/d;

Cnp = ni*(Ixz*dClp+Ixx*dCnp);

Cnr = nl*(Ixz*dClr+Ixx*dCnr);

Cnb = (gbar*s*b)/d* (Ixz*dClb+Ixx*dCnb);

Cndar = (gbar*s*b)/d* (Ixz*dCldar+Ixx*dCndar);
Cnder = (gbar*s*b)/d*(Ixz*dClder+Ixx*dCnder);
Cndry = (gbar*s*b)/d*(Ixz*dCldry+Ixx*dCndry);
Cndtvy = (gbar*s*b)/d*(Ixz*dCldtvy+Ixx*dCndtvy);

Czq = n3*dCzq;

Cza = (gbar*s)/(mass*ubar)*dCza;
Czdap = {(gbar*s)/(mass*ubar)*dCzdap;
Czdep = (gbar*s)/{mass*ubar)*dCzdep;
Cz2dtvp = (gbar*s)/(mass*ubar)*dCzdtvp;

Cyp = nd*dCyp;

Cyr = n4*dCyr;

Cyb = (gbar*s)/(mass*ubar)*dCyb;
Cydar = (gbar*s)/(mass*ubar)*dCydar;

Cyder = (gbar*s)/(mass*ubar)*dCyder;

Cydry = (gbar*s)/(mass*ubar)*dCydry;

Cydtvy = (gbar*s)/(mass*ubar)*dCydtvy;

R e e
// Define A Matrix of Plant

/7 x = [(Pgr)

//



Pparam = p1/180*(0,8,16,24]); / * Average Roll Rate Variation, rad/sec

/7
al = [ Clp Clpg*Pparam(l) Clr;
~-Cmpp*Pparam(1) Ccmg Cmpr*Pparam(i);
Cnp Cnpg*Pparam(1) Cnr 1;
a2 = { Clp Clpg*Pparam(2} Clr;
-Cmpp*Pparam(2) Cmg Cmpr*Pparam(2) ;
Cnp Cnpg*Pparam(2) Cnr 1
a3 = { Clp Clpg*Pparam(3) Clr;
-Cmpp*Pparam(3) Cmg Cmpx *Pparam(3) ;
Cnp Cnpg*Pparam(3) Cnr 1
ad = { Clp Clpg*Pparam(4) Clr;
~-Cmpp*Pparam(4) cmg Cmpr*Pparam(4) ;
cnp Cnpg*Pparam(4) cnr 1;
R e R D ettt R

/’ Define Original B Matrix (Before incorporat:ion of Weighting Matrix)
// Assumptions: Rudder only used for yaw {(no pitch) and ailerons not

/7 used for pitch.
1/
/7 u_orig = (dar der dep dtvp dtvy dry)
/7
Borig = [ Cldar Clder O 0 cldtvy Cldry:
0 0 Cmdep Cmdtvp 0 0

Cndar Cnder 0 0 Cndtvy Cndry);
F e e e L EE PSP
// Define Weighting Matrices. WO is “straight through* approach
/7 Wl 1s *aileron-rudder interconnect" approach
7/
// Assumptions: +/- Max surface deflections are equal
//
darmax = 42*p1/180;
dermax = 24*pi/180;

drymax = 30*p1/180;
dtvymax = 10*p1/180;
depmax = 24*p1/180;
dtvpmax = 20*pi/180;

dahatmax = 3.0; // Max lateral stick (inches)
dehatmax = 5.0; // Max longitudinal stick (incaes)
drhatmax = 1.0; // Full left or raight
W0 = [ darmax/dahatmax 0 0;

dermax/dahatmax 0 0;

0 depmax/dehatmax  0;

0 dtvpmax/dehatmax 0;

0 0 dtvymax/drhatmax;

0 0 drymax/drhatmax ];

Wl = { darmax/dahatmax 0 -{(Cldtvy+Cldry)/Cldar*darmax/drhatmax;

dermax/dahatmax 0 - (Cldtvy+Cldry)/Clder*dermax/drhatmax;

0 depmax/dehatmax 0;

0 dtvpmax/dehatmax O0;

- {Cndar+Cnder) /Cndtvy*dtvymax/dahatmax 0 dtvymax/drhatmax;

- (Cnfar+Cnder) / (10*Cndry) *drymax/dahatmax 0 drymaxsdrhatmax
R R i D D e i et e R L L
// Define New B Matrices (Incorporation of Weighting Matries), B = Borig*Ww
/7 u = [da de dr)

B0 = Borig * WO;

Bl = Borig * Wi;

T R D il Dt i e i e P P T
// Define C and D Matrices for MIMO QFT Package

/7

C = eye(3);

D = O*ones(3,6);

Iw = 0*ones(3);
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Appendix B: Open-Loop Simulations

B.1. Six DOF Bare Aircraft Open-Loop Simulations

This section contains the simulations validating the six DOF model developed in Chapter 2 (Fig. 6).
State responses to each of the six control inputs are obtained first for a low AOA F.C. (20,000 feet, 5
degrees AOA) and then for a high AOA F.C. (106,000 feet, 30 degrees AOA). Note, actuator response

characteristics are not included in these simulation
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Response to Roll Aileron
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Figure 57. Response to Aileron Roll Command, 6 DOF Model, 20kft, Low AOA

Response to Roll Elevator
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Figure 58. Response to Elevator Roll Command. 6 DOF Model, 20kft, Low AOA
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Response to Pitch Elevator
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Figure 59. Response to Elevator Pitch Command, 6 DOF Model, 20 kft, Low AOA

Response to Pitch Thrust Vector
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Figure 60. Response to Thrust Vectored Pitch Command, 6 DOF Model, 20 kft, Low AQOA
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Response to Yaw Thrust Vector
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Figure 61. Response to Thrust Vectored Yaw Command, 6 DOF Model, 20 kft, Low AOA
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Figure 62. Response to Rudder Yaw Command, 6 DOF Model, 20 kft, Low AOA




Response to Roll Aileron
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Figure 63. Response to Aileron Roll Command, 6 DOF Model, 10kft
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Figure 64. Respo:sse to Elevator Roll Command 6 DOF Model, 10kft
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Response to Pitch Elevator
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Figure 65. Response to Elevator Pitch Command, 6 DOF Model, 10kft

Response to Pitch Thrust Vector
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Figure 66. Response to Thrust Vectored Pitch Command, 6 DOF Model, 10kft




Response to Yaw Thrust Vector
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Figure 67. Response to Thrust Vectored Yaw Command, 6 DOF Model, 10kft

Response to Yaw Rudder
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Figure 68. Response to Rudder Yaw Command, 6 DOF Model, 10kft
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B.2. Six DOF Aircraft with Weighting Matrix Open-Loop Simulations

This section contains the simulations validating the weighting matrix. The weighting matrix is
placed in front of the six DOF model control inputs (Fig. 69), and responses are obtained for all three
control inputs (roll, pitch, and yaw) at 10,000 feet, thirty degrees AOA. Note, the actuator response

characteristics are not included in these simulations.
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Figure 69. 6 DOF Model with Weighting Matrix




Response to Roll Command

o 20 .
0 1 il 1 I
0.2 04 0.6 0.8
£ 10+ §
0 A 1 It
0.2 0.4 0.6 0.8 1
o
0 i L 2
@ 0.2 04 0.6 038
- 51 .
L 0.2 0.4 0.6 0.8
£.041} ]
<-0.2r , . ) ) .
0.2 0.4 0.6 0.8 1
94_ T T T T
82| ]
0 0.2 04 0.6 0.8 1
Time (sec)

Figure 70. Response to Roll Command, 6 DOF Weighted Model, 10kft
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Figure 71. Response to Pitch Command, 6 DOF Weighted Model, 10kft
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Response to Yaw Command
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Figurc 72. Response to Yaw Command, 6 DOF Weighted Model, 1ukft

B.3. Weighted QF T Models, Open-Loop Simulations

This section contains the simulations validating the QFT models. The weighting matrix has been

incorporated into the QFT model by performing the matrix multiplication B' = B*W. The B' matrix is then

used in the state-space block of the Simulink simulation in place of B (Fig. 73). Representative responses

to each of the three command inputs (roll, pitch, yaw) are given for all four QFT models (Pparam =0, 8,

16, 24) at 10,000 feet altitude. In addition, responses to a roll command with Pparam = 24 at 15,000 and

20,000 feet are included for further comparis  to the six DOF simulation results.
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Figure 73. 3x3 QFT Linear Simulation Model
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Response to Roll Rate Command
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Figure 74. Response to Roll Command, Weighted QFT Model, Pparam=0, 10kft
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Figure 75. Response to Roll Command, Weighted QFT Model, Pparam=8, 10kft
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Response to Ro!l Rate Command
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Figure 76. Response to Roll Command, Weighted QFT Model, Pparam=16, 10kft
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Figure 77. Response to Roll Command, Weighted QFT Model, Pparam=24, 10kft
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Response to Roll Rate Command
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Figure 78. Response to Roll Command, Weighted QFT Model, Pparam=24, 15kft
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Figure 79. Response to Roll Command, Weighted QFT Model, Pparam=24, 20kft
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Appendix C: Effective Plant Transfer Functions

This chapter presents the effective plant transfer functions for each of the twelve plant cases. The

twelve cases are defined in the MIMO QFT CAD Package as:

Current List of Plant Models

Plant Comments Parameter Value

#1 h 10000
P

#2 h 10000
P

#3 h 10000
P 16

#4 h 10000
p 24

#5 h 15000
P 0

#6 h 15000
P 8

#7 h 15000
P 16

#8 h 15000
P 24

#9 h 20000
|4 0

T vy wo




C.1. Effective Plants

Choice> 3 Effective Pliant Pe s-Domain Transfer Functions

Plant Case: 1 Element: {1, 1}

Roots of Numerator Ruots of Denominator
-0,1180659113 -0.06617260399
-13.1445853 + 15.92479066 I -1.076648798
-13.1445853 - 15.92479066 I -13. + 15.19868415 1

-15.73553132 + 42.03227768 1T -13. - 15.19868415 1
-15.73553132 - 42.03227768 1 -14.924 + 33.19991301 1
-49.65172678 + 52.15231675 I -14.924 - 33.19991301 I
-49.65172678 ~ 52.15231675 1 -44.,25 + 60.55524337 1
-55,27372311 + 83.79775981 I -44.25 - 60.55524337 1
-55.27372311 - 83,79775981 I -49,68 + 52.11427444 1
-49.68 - 52.11427444 1
-62.127 + 85.0195617 I
-62.127 - 85.0195617 1
Factored form gain multiplier: 1157.161246
Plant Case: 1 Element: {1, 2}
Roots of Numerator Roots of Denominator
Factored form gain multiplier: 0
Plant Case: 1 Element: (1, 3)
Roots of Numerator Roots of Denominator
0.250583541 -0.06617260399
-12.76209141 + 13.81487535 1 -1.076648798
-12,76209141 - 13.81487535 1 ~13. + 15.19868415 I
-15.,27589594 + 39.8708367 I -13. - 15.19868415 I
-15.27589594 - 39.8708367 I -14.924 + 33.19991301 1
-49.72241744 + 52.05562842 1 -14,.924 - 33.19991301 I
-49,72241744 - 52.05562842 1 -44.25 + 60.55524337 I
-56.7089719 + 84.15858497 I -44.25 - 60.55524337 I
-56.7089719 - 84.15858497 I -49.68 + 52.11427444 1
-49.68 - 52.11427444 1
-62.127 + 85.0195617 1
-62.127 - 85.0195617 I
Factored form gain multiplier: 3197.602531
Plant Case: 1 Element: (2, 1}
Roots of Numerator Roots of Denominator
Factored form gain multiplier: 0
Plant Case: 1 Element: (2, 2}
Roots of Numerator Roots of Denominator
-14.76581091 + 21.99367018 I -0.1485284702
-14.76581091 - 21,99367018 I -13. + 15.19868415 1I
-17.15376289 + 86.63948955 I -13. - 15.19868415 I
-17.15376289 - 86.63948955 I -14.924 + 33.18991301 1

-14.924 - 33.19991301 T

-62.127 + 85.0195617 1

-62.127 - 85.0195617 1
Factored form gain multiplier: -204.4085555

Plant Case: 1 Element: {2, 3}
Roots of Numerator koots of Denominator

Factored form gain multiplies: 0

Plant Case: 1 Element: (3, 1}

Roots of Numerator Roots of Denominator
0.2226635869 -0.06617260399
-12.40529826 11.65364509 -1.076648798

-12.40529826 11.65364509
-15.00543659 + 42.44927428

+
- -13. + 15.1986841¢ T
+
-15.00543659 - 42.44927428
+
+

-13. - 15.19868415 1
-14.924 + 33.19991301 1
-14.924 - 33.19991301 I
-44.25 + 60.55524337 1
-44.25 - 60.55524337 1
-49.68 + 52.11427444 1

-50.55177141 50.69631972
-50.55177141 - 50.69631972
-54.36332547 + 83.74883311
-54,36332547 83.74883311

et bed e b b b e
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Factored form gain multiplier:

Plant Case: 1 Element: {3, 2}
roots of Numerator

Factored form gain multiplier: 0

Plant Case: 1 Element: (3, 3}
Roots of Numerator

-0.57779199

-13,.80372315 + 18.55653714 I
-13.80372315 - 18.55693714 I
-15.94702152 + 39.43184289 I
-15.94702152 - 39.43184289 1
-48.71359453 + 53.64893544 1
-48.71359453 - 53.64893544 I
-57.64123437 + 84.21130541 I
-57.64123437 - 84.21130541 I

Factorz2d form gain multiplier:

Plant Case: 2 Element: {1, 1)
Roots of Numerator
-0.1333221792 + 0.07425268253 1
-0.1333221792 - 0.07425268253 1

-13.14455974 + 15.92480223 1
-13.14455974 - 15.92480228 T
-15.73553272 + 42.03227784 1
-15.73553272 - 42.03227784 I
-49.65172585 + 52.15231623 I
-49.65172585 - 52.15231623 I
-65.27372321 + 83.79776009 I
-55,27372321 - 83.79776009 I

-49.68 - 52.11427444
-62.127 + 85.0195617
-€7.127 - 85.0195617

A N B L)

-624.8642066

Roots of Denominator

-0.06617260399
-1.076648798

-13. + 15.19868415 I
-13. - 15.19868415 1I
-14.924 + 33.19991301 1
-14.924 - 33.19991301 1
-44.25 + 60.55524337
-44.25 - 60.55524337
-49.68 + 52.11427444
-49.68 ~ 52.11427444
-62.127 + 85.0195617
-62.127 - 85.0195617

- -

-2579.738509

Roots of Denominator

-0.1080975896 + 0.07658317 1
-0.10809758%96 - 0.07€58317 1
-1.075154693

-13. + 15.19868415 1

-13. - 15.19868415 I

-14.924 + 33.19991301 ¥

-14.924 - 33.19991301 I
-44.25 + 60.55524337 I
-44.25 - 60.55524337 1
-49.68 + 52.11427444 1
~49.68 - 52.11427444 I
-62.127 + 85.0195617 I

I

-62.127 - 85.0155617

Factored form gain multiplier: 1157.161246

-

Plant Case: 2 Element: {1, 2}
Roots of Numerator

-0.5230351447

-14.76581091 » 21.99367018 I
-14.76581091 - 21.99367018 I
-17.15376289 + 86.63948955 1
~17.15376282 - 86.63948955 I
-1.690230139%e13

Factored form gain multiplier: 1

Plant Case: 2 Element: {1, 3)
Roots of Numerator

0.2213005055
-0.1191011217

-12.76216403 + 13.81485561 1
-12.76216403 - 13.81485561 I
-15.27589417 + 39.87083626 I
-15.27589417 - 39.87083626 I
-19,72241888 + 52.05562921 I
-49 72241888 - 52.05562921 I
-5C.70897176 + 84.15858459 %
-56.70897176 - 84.15858459 1

.09000372 10

Roots of Denominator
-0.1080975896 +« 0.07658317 I
-0.1080975896 - 0.07658317 1
-1.075154693

-13., + 15.19868415 I

-13. -~ 15,19868415 I

-14.924 + 33.19991301 I
-14.924 - 33.19991301 1
-62.127 + 85.0195617 I
-62.127 - 85.0195617 I

12

Roots of Denominator
-0.1080975896 + 0.07658317 1
~-0.1080975896 - 0.07658317 1
-1.075154693

-13. + 15.19868415 1
-13. - 15.19868415 1
-14.924 + 33.19991301 I
-14.924 - 33.19991301 1
-44.25 + 60.55524337 1
-44.25 - 60.55524337 I
-49.68 + 52.11427444 1
-49.€9 - 52.11427444 I
-62.127 + 85.(6195617 1
I

-62.127 - 85.0195517

Factored form gain multiplier: 3197.&02531




Plant Case: 2 Element: {2, 1}
Roots of Numerator
-0.3354757393
-14.24297505
-14.24297905
-16.83484837
-16.83484837
-48.22212047 54.32054519
-48.22212047 54.,32054519
-56.74455107 + 83.92480943
-56.74455107 - 83.92480943
-2.717886681el2

20.50922195
20.50922195
.10016652
41.10016652

LI S T S
-
-
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Factored form gain multiplier:

flant Case: 2 Element: {2, 2}
Roots of Numerator
-0.06617260399
-1.076648798
-14.76581091 + 21.99367018 1
-14.76581091 - 21.99367018 I
-17.15376289 + 86.63948955 I
-17,15376289 - 86.63948955 I

Factored form gain multiplier:

Plant Cas2: 2 Element: {2, 3}
Roots of Numerator
37.97965347
-2.538773868
-12.66342271 + 39.983698 I
-12.66342271 - 39.983698 I
~36.51975006
-52.4476482 + 84.09578587 I
-52.4476482 - 84.09578587 I
-54.02567326 + 42.30252203 I
-54.02567326 -~ 42,8025220% I
-1.260164292el12

Factored form gain multiplier:

Plant Case: 2 Element: (3, 1}
Roots of Numerator
0.1779069697
-0.1035524666
-12.40540876
-12.40540876
-15.00543422
-15.00543422
-50.55177317
-50.55177317
-54.36332527
~54.36332527

11.65363828
11.65363828
42.44927371
.44927371
50.69632077
50.69632077
83.7488326 I
83.7488326 1

o HMH -

1+ 0+ 0+ 14
S
N

Factored form gain multiplier:

Plant Case: 2 Element: {3, 2}
Roots of Numerator
-1.485201811
-14.76581091 + 21.99367018 I

Roots of Denominator
-0.1080975896 « 0.07¢58317 I
-0.1080975896 - 0.07658317 1
-1.075154693

-13. + 15.19868415 1

-13. - 15.19868415 I

-14,924 + 33.19991301 I
-14.924 - 33.1999%1301 I
-44.25 + 60.55524337
-44.25 - 60.55524337
-49.68 + 52.11427444
-49,68 - 52.11427444
-62.127 + 85.0195617
-62.127 - 85.0195617

b

-11

.0315126 10

Roots of Denominator
-0.1080975896 + 0.07658317 I
-0.1080975896 - 0.07658317 I
-1.075154693

-13. + 15.19868415 I

-13. - 15.19868415 I

-14.924 + 33.19991301 I
-14.924 - 33.19991301 I
-62.127 + 85.0195617 I
-62.127 - 85.0195617 1

~204.4085555

Roots of Denominator
-0.1080975896 + 0.07658317 1
-0.1080975896 - 0.07658317 I
-1.075154693

-13. + 15.19868415 I

-13. - 15.19868415 I

-14.924 + 33.19991301 I
~14.924 - 33.19991301 I

-44.25 + 60.55524337 I
-44.25 - 60.55524337 I
-49.68 + 52.11427444 1
-49.68 - 52.11427444 1
-62.127 + 85.019561%7 I
-62.127 - 85.0195617 I
-11
.8266564 10

Roots of Denominator
-0.1080975896 + 0.07658317 1
-0.1080975896 - 0.07658317 I
~1.075154693

-13. + 15.19868415 1

-13. - 15,19868415 I

~14.924 + 33.19991301 I
-14.924 - 33.19991301 I
-44.25 + 60.55524337
-44.25 - 60.55524337
-49.68 + 52.11427444
-49.68 - 52.11427444
-62.127 + 85.0195617
~62.127 - 85.0195617

Pt

-624.8642066

Roots of Denominator

-0.1080975896 + 0.07658317 1
-0.1080975896 - 0.07658317 I
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-14.76581091 - 21.99367018 I ~1.075154693
-17.15376289 + 86.63948955 [ -13. + 15.19868415
-17.15376289 - 86.63948955 I -13. - 15.19868415 I
-9.82923102%e12 -14.924 + 33.19991301 1
-14.924 33.19991301 1

-62.127 + 85.0195617 1
-62.127 - 85.0195617 I

-12
Factored form gain multaplier: 1.210876964 10

Plant Case: 2 Element: {3, 3}

Roots of Numerator Roots of Denominator
-0.1681583335 -0.1080975896 + 0.07658317 1
~0.5582181348 -0.1080975896 ~ 0 07658317 I
-13.80369432 + 18.55695501 1 -1.075154693

-13.80369432 - 18.55695501 I -13. + 15.19668415 I
-15.94702363 + 39.43184308 I -13. - 15.19868415 ¥
-15.94702363 - 39.43184308 I -14.924 + 33.19991301 I
-48.71359314 + 53.64893471 I -14.924 - 33.19991301 I
-48.71359314 - 53.64893471 I -44.25 + 60.55524337
-57.64123449 + 84.21130579 I -44.25 - 60.55524337
-57.64123449 - 84.21130579 1 -49.68 + 52.11427444

-49.6c - 52.11427444

-62.127 + 85.0195617

-62.127 - 85.0195617
Factored form gain multapiier: -2579.738509

[ R I I B o ]

Plant Case: 3 Element: {1, 1}
Roots of Numerator Roots of Denominator

-0.1333971474 + 0.1508305649 I -0.1102810409 + 0.1€633450017 I
-0.1333971474 - 0.1508305649 I 0.1102810409 - 0.1693450017 I

-13.14448306 + 15.92483713 I -1.07078779
-13.14448306 - 15.92483713 I -13. + 15.19868415 I
~-15.7355369 + 42.0322783 1 -13. - 15.19868415 I
-15.7355369 - 42.0322783 1 -14.924 + 33.19991391 I
-49.65172307 + 52.15231468 I -14.924 - 33.19991301 I
-49.65172307 - 52.15231468 I -44.25 + 60.55524337 I
-55,27372352 + 83.79776093 I -44.25 - 60.55524337 1
-55.27372352 - 83.79776093 I -49.68 + 52.,11427444 1

-49.68 - 52.11427444 1

-62.127 + 85.0195617 1

-62.127 - 85.0193617 1
Factored form gain multiplier: 1157.161246

Plant Case: 3 Element: {1, 2}

Roots of Numerator Roots of Denominator
4.245414924e74 -0.1102810409 + 0.1693450017 1
-0.5230351441 -0.1102810409 - 0.1693450017 1
-14.76581091 + 21.99367018 I -1.07078779
-14.76581091 - 21.99367018 I -13. + 15.19868415 I
-17.15376289 + 86.63948955 I -13. - 15.19868415 1
-17.15376289 - 86.63948955 1 -14.924 + 33.19991301 I

-14.924 - 33.19991301 I
-62.127 + 85.0195617 1
-62.127 - 85.0195617 1

-14
Factored form gain multiplier: -8.679279517 10
Plant Case: 3 Element: {1, 3}
Roots of Numerator Roots of Denominator

0.05131616753 + 0.05994986898 I -0.1102810409 + 0.16593450017 I
0.05131616753 - 0.05994986898 I -0.1102810409 - 0.1693450017 I
~12.76238192 13.81479643 -1.07078779
-12.76238192 13.81479643 -13. + 15.19868415 I
-15.27588884 39.87083494 -13. - 15.19868415 1
-15.27588884 39.87083494 -14.924 + 33.19991301 I
-49.72242321 52.05563157 -14.924 - 33.199913C1 I
~49.72242321 52.05563157 -44.25 + 60.55524337
-56.70897135 84.15858347 ~44.25 - 60.55524337
-56.70897135 84.15858347 -49.68 + 52.11427444
-49.68 - 52.11427444
-62.127 + 85.0195617

L+ o+ 4+
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Factored form gain multiplier:

Plant Case: 3 Element: {2, 1}
Roots of Numerator
6.151289702e12
-0.3354757393

-14.24297905 + 20.50922195 T
-14.24297905 - 20.50922195 I
-16.83484837 + 41.10016652 I
-16.83484837 - 41.10016652 I
~48.22212047 + 54.32054519 I
-48.22212047 - 54.32054513 I
-56.74455107 + 83.92480943 I

- I

-56.74455107 83.92480943

Factored form gain multiplier:

Plant Case: 3 Element: {2, 2}
Roots of Numerator
-0.06617260399
~1.076648798
-14.76582091 + 21.99367018
-14.76581091 - 21 99367018
-17.15376289 + 86.63948955
-17.15376289 - 86.63948955

o H R

Factored form gain multipl:ier:

Plant Case: 3 Element: {2, 3}
Roots of Numerator
2.315106326elz
37.97965347
-2.538773868
-12.66342271 + 39.983698 I
-12.66342271 - 39.983698 1
-36.51975006
-52.4476482 + 84.09578587 I
-52.4476482 - 84.09578587 I
-54.02567326 + 42.80252203 I
-54.02567326 - 42.80252203 I

Factored form gain multiplier:

Plant Case: 3 Element: {3, 1}

Roots of Numerator
0.03750631916 + 0.155294993 I
0.03750631916 - 0.155294993 I
-12.40574026 + 11.65361791 I
-12.40574026 -~ 11.65361791 1
-15.0054271 + 42.44927198 1
-15.0054271 -~ 42.44927198 ¥
-50.55177845 + 50.69632392 I
-5(.55177845 - 50.69632392 I
-54.36332468 + 83,74883107 I
-54.36332468 - 83.74883107 1

Factored form c¢as;n multiplier:

-62.127 - 85.0195617 1
3197.602531

Roots of Denominator
-0.1102810409 + 0.1693450017 I
-0.1102810409 - 0.1693450017 I
-1.07078779

-13. + 15.19868415 I

~13. - 15.19868415 I

~14.924 + 33.19991301 1
~14.924 - 33.19991301 1

-44.25 + 60.55524337
-44.25 - 60.55524337
~49.68 + 52.11427444
-49.,68 - 52.11427444
-62.127 + 85.0195617
-62.127 - 85.0195617

= A

-12
-9.11527336 10

Roots of Denominator

-0.1102810409 + 0.1693450017 I

-0.1102810409 - 0.1693450017 1I

-1.07078779

-13. + 15.19868415 I

-13. - 15.19868415 I

-14.924 + 33.19991301 1

-14.924 - 33.19991301 I

-62.127 + 85.0195617 1

-62.127 - 85.0195617 1
-204.4085555

Roots of Denominator
-0.1102810409 + 0.1693450017 I
-0.1102810409 - 0.1693450017 I
-1.07078779

-13. + 15.19868415 I

-13. - 15.19868415 1

-14.924 + 33.19991301 I
-314.924 - 33.19991301 1

-44.25 + 60.55524337
-44.25 - 60.55524337
-49.68 + 52.11427444
-49.68 - 52.11427414
-62.127 + 85.0195617
-62.127 - 85.0195617

P4 -

-11
-1.988580086 10

Roots of Denominator

-0.1102810409 + 0.1693450017 T

-0.1102810409 - 0.1693450017 1

-1.07078779

-13. + 15.19868415 I

-13. - 15.19868415 I

-14.924 + 33.19991301 1

-14.924 - 33.19991301 1

-44.25 + 60.55524337

-44,25 - 60.55524337

-49.68 + £°.11427444

-49.68 - 52.11427444

-62.127 + 85.0195617

-62.127 - 85.0195617
-624.8642066

g et
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Plant Case: 3 Element: {3, 2}

Roots of Numerator Roots of Denominator
-1.485201811 -0.1102810499 + 0.1693450017 I
-14,76581091 + 21.99367018 I -0.1102810409 - 0.1693450017 I
~14,76581091 - 21.99367018 I -1.07078779

-17.15376289 + 86.63948955 I -13, + 15.19868415 T
-17.15376289 - 86.63948955 I -13. - 15.19868415 I
-2.427762003e13 -14.924 + 33.19991301 I

-14.924 - 33.19991301 ¢}
-62.127 + 85.0195617 I

-62.127 85.0195617 I
-13
Factored form gain multiplier: 9.804906259 10
Plant Case: 3 Element: {3, 3}

Roots of Numerator Roots of Denominator
-0.2451779596 -0.1102810409 + 0.1693450017 I
-0.4813665423 -0.1102810409 - 0.1693450017 I
-13.80360782 + 18.55700864 I -1.07078779
-13.80360782 - 18.55700864 I -13. + 15.19868415 I
-15.94702994 + 39.43184365 I -13. - 15.19868415 I
-15.94702994 - 39.43184365 I -14.924 + 33.19991301 I
-48,71358895 + 53.64893255 I -14.924 -~ 33.19991301 I
-48.71358895 - 53.64893255 I -44.25 + 60.55524337
-57.64123484 + 84.21130695 I -44.25 - 60.55524337
-57.64123484 - 84.21130695 I -49.68 + 52.11427444

-49.68 - 52.11427444

-62.127 + 85.0195617

-62.127 - 85.0195617
Factored form gain multiplier: -2579.738509

oy e

Plant .ase: 4 Element: {1, 1}

Roots of Numerator Roots of Denominator

-0.133522104 + 0.226886148 -0.1137334365 + 0.2590698828 I

-0.133522104 - 0.226886148 -0.1137334365 - 0.2590698828 I

~13.14435526 + 15.92489521 -1.063882999

-13.14435526 - 15.92489521 -13. + 15.198606415 1
-15.73554388 + 42.03227907 -13. - 15.19868415 I
-15.73554388 - 42.03227907 -14.924 + 33.19991301 I
-49.65171843 + 52.15231208 -14.924 - 33.19991301 1

+

IR R R N R R A N N ]

-49.65171843 52.15231208 -44.25 + 60.55524337 1

~55.27372402 83.79776234 -44.25 - 60.55524337 1

-55.27372402 83.79776234 -49.68 + 52.11427444 I
-49.68 - 52.11427444 1
-62.127 + 85.0195617 1
-62.127 - 85.0195617 I

Factored form gain multiplier: 1157.161246

Plant Case: 4 Element: (1, 2}

Roots of Numerator Roots of Lenominator

8.878894811lel3 -0.1137334365 + 0.2590698828 I

-0.5230351441 -0.1137334365 - 0.2550698828 I

-14.76581091 + 21.99367018 I -1.063t182999

-14.76581091 - 21.99367018 I -13., + 15.19868415 1

-17.15376289 + 86.63943955 I -13. - 15.19868415 I

-17.15376289 -~ 86.63948355 I -14.924 + 33.19991201 1
-14.924 - 33.19991301 I
-62.127 + 85.0195617 I
-62.127 - 85.0195617 I

-13
Factored form gain multiplier: -6.224954272 10
Plant Case: 4 Element: {1, 3}
Roots of Numerator Roots of Denominator

0.05167697995 + 0.2405466283 I -0.1137334365 + 0.2590698828 I
0.05167697995 - 0.2405466283 I -0.1137334365 - 0.2590698828 I

-12.76274509 + 13.81469789 I -1.063882999
-12.76274509 - 13.81469789 I -13. + 15.19868415 I
-15.27587997 + 39.87083275 I -13. - 15.19868415 I
-1£,27587997 - 39.87083275 I -14.924 + 33.19991301 1

141




-49.72243041 + 52,05563551 I -14.924 - 33.19991301 1
-49.72243041 - S2.05563551 I -44.25 + 60.55524337 I
-56.70897067 + 84.1585816 I -44.25 - 60.55524337 1
-56.70897067 - 84.1585816 1 -49.68 + 52.11427444 1
-49.68 - 52.11427444 1
-62.127 + 85.0195617 I
-62.127 - 85.0195617 1

Factored form gain multiplier: 3197.602531

Plant Case: 4 Element: {2, 1)}

Roots of Numerator Roots of Denominator
1.751624825e13 -0.1137334365 + 0.2590698828 I
-0.3354757393 -0.1137334365 - 0.2590698828 I
-14.24297905 + 20.50922195 I -1.063882999
-14.24297905 - 20.50922195 I -13. + 15.19868415 I
-16.83484837 + 41.10016652 1 -13. - 15.19868415 I
~16.83484837 - 41.10016652 I ~14.924 + 33.19991301 I
-48.22212047 + 54.32054519 I -14.924 -~ 33.19991301 I
-48.22212047 - 54.32054519 I ~44.25 + 60.55524337 1
-56.74455107 + 83.92480943 1 -44.25 - 60.55524337 1
-56.74455107 - 83.92480943 I -49.68 + 52.11427444 1

-49.68 - 52.11427444 1

-62.127 + 85.0195617 I

-62.127 - 85.0195617 I

-12
Factored form gain multiplier: -4.801600749 10
Plant Case: 4 Element: (2, 2}

Roots of Numerator Roots of Denominator
-0.06617260399 -0.1137334365 + 0.2590698828 I
-1.076648798 ~0.1137334365 - 0.2590698828 I
-14.76581091 + 21.99367018 I -1.063882999
-14.76581091 - 21.99367018 I -13. + 15.19868415 I
-17.15376289 + 86.63948955 I -13. - 15.19868415 I
-17.15376289 - 86.63948955 I -14.924 + 33.19991301 1

-14.924 - 33.19991301 1

-62.127 + 85.0195617 I

-62,127 - 85.0195617 I
Factored form gain multiplier: -204.4085555

Plant Case: 4 Element: (2, 3)

Roots of Numerator Roots of Denominator
1.381470153el2 -0.1137334365 + 0.2590698828 I
37.97965347 -0.1137334365 - 0.2590698828 I
-2.538773868 -1.063882999
-12.66342271 + 39.983698 1 -13. + 15.19868415 I
-12.66342271 - 39.983698 I -13. - 15.19868415 I
-36.5197500¢€ -14.924 + 33.19991301 I
-52.4476482 + 84.09578587 I -14.924 - 33.19991301 I
~-52.4476482 - 84.09578587 I -44.25 + 60.55524337 1
-54.02567326 + 42.80252203 I -44.25 - 650.55524337 1
-54.02567326 - 42.80252203 I -49.68 + 52.11427444 1

-49.68 - 52.11427444 1

-62.127 + 85.0195617 1

-62.127 - 85.0195617 I

-11
Factored form gain multiplier: -4.998777203 10
Plant Case: 4 Element: {3, 1)

Roots of Numerator Roots of Denominator

0.03805472456 + 0.3119505612 I  -0.1137334365 + 0.2580698828 I
0.03805472456 - 0.3119505612 I  -0.1137334365 - 0.2590698828 I

-12.40629272 + 11.65358421 I -1.063882999
~12.40629272 - 11.65358421 I -13. + 15.19868415 1
-15.00541525 + 42.4492691 1 -13. - 15.19868415 1
-15.00541525 - 42.4492691 1 -14.924 + 33.19991301 I
-50.55178724 + 50.69632917 I -14.924 - 33.19991301 I
-50.55178724 - 50.69632917 I -44.25 + 60.55524337 1
-54.36332368 + 83.74882852 I -44.25 - 60.55524337 1
-54.36332368 - 83.74882852 1 -49.68 + 52.11427444 1

-49.68 - 52.11427444 I
-62.127 + 85.0195617 I




-62.127 - 85.0195617 1
Factored form gain muitiplier: -624.8642066

Plant Case: 4 Element: (3, 2}

Roots of Numerator Roots of Denom:inator
2.866812795e13 -0.1137334365 + 0.2590698828 1
-1.485201811 -0.1127334355 - 0.2590698828 1
-14.76581091 + 21.99367018 I -1.063882999

-14.76581091 - 21.99367018 I -13. + 15.19868415 1
-17.15376289 + 86.63948955 1 -13. - 15.19868415 I
-17.15376289 - 86.63948955 I -14.924 + 33.19991301 1

-14.924 - 33.19991301 1
-62.127 + 85.0195617 I
-62.127 - 85.0195617 I

-12
Factored form gain multiplier: -1.245493544 10
Plant Case: 4 Element: (3, 3}
Roots of Numerator Roots of Denominator

-0.3634122948 + 0.1618778524 I -0.1137334365 + 0.2590698828 I
-0.3634122948 -~ 0.1618778524 I -0.1137334365 - 0.2590698828 I
-13.80346364 + 18.557098 I -1.063882999
~13.80346364 - 18.557098 1 -13. + 15.19868415 1
-15.94704047 + 39.43184461 I -13. - 15.19868415 1
-15.94704047 - 39.43184461 I -14.924 + 33.19991301 I
-48.71358198 + 53.64892893 I -14.924 - 33.19991301 1
-48.71358198 - 53.64892893 1 -44.25 + 60.55524337 1
~57.64123543 + 84,21130887 1 -44.25 - 60.55524337 1
-5:.54123543 - 84.21130887 I -49.68 + 52.11427444 1
-49,68 - 52.11427444 1
-62,127 + 85.0195617 1
-62.127 - 85.0195617 1
Factored form gain multiplier: -2575.738509
Plant Case: 5 Element: {1, 1)
Roots of Numerator Roots of Denominator
-0.1126673471 -0.06201210412
-13.15110836 + 15.94448679 I -0.997365568
-13.15110836 - 15,94448679 I -13., + 15.19868415 1
-15.73743682 + 42.03080543 I -13., - 15.19868415 1
-15.73743682 -~ 42.03080543 1 -14.924 + 33.19991301 I
-49.65339301 + 52.15007315 1 -14.924 - 33.199%1301 1
-49.65339301 - 52.15007315 1 -44.25 + 60.55524337
-55.2784838 + 83.79977156 I -44.25 - 60.55524337
-55.2784838 - 83.79977156 I -49,.68 + 52.11427444

-49.68 - 52.11427444

-62.127 + 85.0195617

~62.127 - 85.0195617
Factored form gain multiplier: 1135.56275

Pt e e

Plant Case: 5 Element: {1, 2}
Roots of Numerator Roots of Denominator

Factored form gain multiplier: 0

Plant Case: 5 Element: {1, 3)

Roots of Numerator Roots of Denominator
0.2385145022 ~0.06201210412
-12.74971151 + 13.7726672 I -0.997365568
-12.74971151 - 13.7726672 I -13. + 15.19868415 1
-15.27249035 + 39.85762199 1 ~13. - 15.19868415 1
-15.27249035 - 39.85762199 I ~14.924 + 33.1999%1301 I
-49.71988084 + 52.05911201 I -14,924 - 33.19991301 I
~49.71988084 - 52,05911201 I -44.25 + 60.55524337
-56.71481482 + 84.1592048 I ~44.25 - 60.55524337
-56.71481482 - 84.1592048 T -49.68 + 52.11427444

-49.68 - 52.11427444

-62.127 + 85.0195617

~62.127 - 85.0195617
Factored form gain multiplier: 3138.264615

o b e




Plant Case: 5 Element: {2, 1)
Roots of Numerator Roots of Denominator

Factored form gain multiplier: 0

Plant Case: 5 Element: {2, 2}

Roots of Numerator Roots of Denominator

-14.76364568 + 21.98417326 -0.1366001171

-14.76364568 - 21.98417326 -13. + 15.19868415 I

-17.13211925 + 86.63467236 -13. - 15.19868415 1

-17.13211925 - 86.63467236 -14.924 + 33.19991301 I
-14.924 - 33.19991301 1
-62.127 + 85.0195617 I
-62.127 - 85.0195617 I

Factored form gain multiplier: -205.312979

bl b

Plant Case: 5 Element: {2, 3)
Roots of Numerator Roots of Denominator

Factored form gain multiplier: 0

Plant Case: 5 Element: {3, 1}

Roots of Numerator Roots of Denominator
0.2210511777 -0.062012104132
-12.38008903 + 11.5545971 I -0.997365568
-12.38008903 - 11.5545971 I -13. + 15.19868415 1
-14.99454494 + 42.44663728 1 -13, - 15.19868415 I
-14.99454494 - 42.44663728 1 -14.924 + 33.19991301 I
-50...11786 + 50.6784398 1 -14,924 - 33.19991301 I
-50.5611786 - 50.6784398 1 -44.25 + 60.55524337 1
-54.3552077 + 83.7490214 1 -44.25 - 60.55524337 1
-54.3552077 - 83.7490214 I -49.68 + 52.11427444 1
-49.68 - 52.11427444 1
-62.127 + 85.0195617 I
-62.,127 - 85.0195617 1

Factored form gain rmultiplier: -612.5048551

Plant Case: 5 Element: {3, 2}
Roots of Numerator Roots of Denominator

Factored form gain multiplier: 0

Plant Case: 5 Element: {3, 3)
Roots of Numerator Roots of Denowminator
-0.536633144 -0.06201210412
-13.82385478 18.61043872 -0.997365568
-13.82385478 18.61043872 -13. + 15.19868415 1
~15.95495777 39.42818093 -13. - 15.19868415 I
-15.95495777 39.42818093 -14.924 + 33.19991301 I
-48.70565529 .66243292 -14.924 - 33.19991301 I
-48.70565529 53.66243292 -44.25 + 60.55524337
-57.65121702 84.21252942 -44.25 - 60.55524337
-57.65121702 84.21232942 -49.68 + 52.11427444
-49.68 -~ 52.71427444
-62.127 + 85.0195617
-62.127 - 85.0195617
Factored form gain multiplier: -2540.565597

ot
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Plant Case: 6 Element: {1, 1}
Roots of Numerator Roots of Denominator

-0.1246591708 + 0.07467766531 1 -0.1001018991 « 0.07866949412 1
-0.1246591708 - 0.07467766531 I -0.1001018991 - 0.07866949412 I

-13.15108234 + 15.94449366 I -0.9957739909
-13.15108234 - 15.94449866 I -13. + 15.19868415 1
-15.73743823 + 42.0308056 I -13. - 15.19868415 I
-15.73743823 - 42.0308056 I -14.924 + 33.19991301 I
-49.65339207 + 52.15007262 1 -14.924 - 33.19991301 I
-49.65339207 - 52.15007262 I -44.25 + 60.55524337
-55.2784839 + 83.79977184 I -44.25 - 60.55524337
-55.2784839 - 83.79977184 I -49.68 + 52.11427444

-49.68 - 52.11427444

-62.127 + 85.019%5617

-62.127 - £5.0195617
Factored form gain muitiplier: 1135.56275

R R RS ]
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Plant Case: 6 Element: {1, 2}

Roots of Numerator Roots of Denominator
5.169088345e13 -0.1001018991 + 0.07866949412 1
-0.4884913722 -0.1001018991 - 0.0786694%9412 1
-14.76364568 + 21.98417326 I -0.9957739909

-14.76364568 - 21.98417326 1 -13. + 15.1986841% I
-17.13211925 + 86.63467236 1 -13. - 15.19868415 I
-17.13211925 - 86.63467236 I -14.924 + 33.19991301 I

-14.924 - 3.19991301 I
-62.127 + 85.0195617 1
-62.127 - 85.0195617 I

-13
Factored fcrm gain multiplier: -3.579951987 10
Plant Case: 6 Element: {1, 3)
Roots of Numerator Roots of Denominator
0.2066927034 -0.1001018991 + 0.07866949412 I
-0.1046292009 -0.1001018991 - 0.07866949412 1
-12.74978653 + 13.77264691 I -0.9957739909
-12.74978653 - 13.77264691 I -13. + 15.19868415 1
-15,27248857 + 39.85762151 I -13., - 15.19868415 I
-15.27248857 - 39.85762151 I -14.924 + 33.19991301 1
-49,71988229 + 52.0591128 1 -14.924 - 33.19991301 1
-45.71988229 - 52.05%1128 1 -44.25 + 60.55524337 1
-56.71481468 + 84.15920442 1 -44.25 - 60.55524337 1
-56.71481468 - 84.15920442 I -49.68 + 52.11427444 1
-49.68 - 52.11427444 I
-62.127 + 85.0195617 I
-62.127 - 85.0195617 1
Factored form gain multaiplier: 3138.264615
Plant Case: 6 Element: {2, 1}
Roots of Numerator Roots of Denominatcor
1.786836745e13 -0.1001018991 + 0.07866949412 I
-0.3210353119 -0.1001018991 - 0.07866949412 I
-14.28636138 + 20.61043488 1 -0.995773990%9
-14.28636138 - 20.61043488 1 -13. + 15.19868415 1
-16.85701882 + 41.0898694 1 -13. - 15.19868415 I
-16.85701882 - 41.0898694 I -14.924 + 33.19991301 I
-48.21095518 + 54.34137954 1 -14.924 - 33.19991301 1
-48.21095518 - 54.34137954 1 -44.25 + 60.55524337 1
-56.77048907 + 83.929752<% T -44.25 - 60.55524337 1
-56.77048907 - 83.9297".. -49.68 + 52.11427444 1
-49.68 - 52.11427444 1
-62,127 + 85,0195617 I
-62.127 - 85,0195617 I
-12
Factored form gain multaiplier: -1.541480311 10
Plant Case: 6 Element: {2, 2}
Roots of Numerator Roots of Denominator
-0.06201210412 -0.1001018991 + 0.07866949412 1
-0.997365568 -0.1001018991 - 0.07866949412 I
-14.76364568 + 21.98417326 I -0.9957739909
-14.76364568 ~ 21.98417326 I -13., + 15.19868415 1
-17.13211925 + 86.63467236 1 -13., - 15.19868415 1
-17.13211925 - 86.63467236 I -14.924 + 33.19991301 1

-14.924 - 33.19991301 1

-62.127 + 85.0195617 1

-62.127 -~ 85.0195617 I
Factored form gain multiplier: -205.312979

Plant Case: 6 Element: {2, 3}

Roots of Numerator Roots of Denominator
2.851382737el2 -0.1001018991 + 0.07866949412 I
39.54079128 -0.1001018991 - 0.07866949412 1
-2.315207499 -0.9957739909

-12.63819681 + 39.90321185 I -13. + 15.19868415 T
-12.63819681 - 39.90321185 I -13. - 15.19868415 I
-37.38993011 -14.924 + 33.19991301 1
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-52.37118734 + 84.09773695 I -14.924 - 33.19991301 I
-52,37118734 - 84.09773695 1 -44.25 + 60.55524337 1
-54.03931775 + 42.52656698 I -44.25 - 60.55524337 1
-54.03931775 - 42.52656698 1 -49.68 + 52.11427444 1

-49.68 - 52.11427444 1

-62.127 + 85.0195617 I

-62.127 - 85.0195617 1

-12
Factored form gain multiplier: -7.7283252%9 10
Plant Case: 6 Element: {3, 1}

Roots of Numerator Roots of Denominator
0.1735209802 -0.1001018991 + 0.07866949412 I
-0.08884012941 -0.1001018991 - 0.07866949412 1
-12.38020474 + 11.55459044 I -0.9957739909
-12.38020474 - 11.55459044 T -13., + 15.19868415 I
~14.99454255 + 42.44663668 I -13. - 15.19868415 1
-14.99454255 - 42.44663668 1 -14.924 + 33.19991301 I
-50.56128038 + 50.67844086 1 -14.924 - 33.19991301 1
-50.56118038 - 50.67844086 I -44.25 + 60.55524337 I
-54.3552075 + 83.74902089 I -44.25 - 60.55524337 I
-54.3552075 - 83.74902089 I -49.68 + 52.11427444 1

-49.68 - 52.11427444 I

-62.127 + 85.0195617 1

-62.127 - 85.0195617 1
Factored form gain multaplier: -612.7048551

Plant Case: 6 Element: {3, 2}

Roots of Numerator Roots of Denominator
~1.374299119 -0.1001018991 + 0.07866949412 I
-14.76364568 + 21.98417326 I -0.1001018991 - 0.07866%49412 I
-14.76364568 - 21,98417326 1 -0.9957739909
-17.13211925 + 86.63467236 I -13. + 15.19868415 1
-17.13211925 - 86.63467236 I ~13. - 15.19868415 I

-14.924 + 33.19991301 I

-14.924 - 33.19991301 I

-62.127 + 85.0195617 I

-62.127 - 85.0195617 1
Factored form gain multaplier: 11.95465082

Plant Case: 6 Element: (3, 3}

Roots of Numerator Roots of Denominator
-0.1577260214 -0.1001018991 + 0.07866949412 I
-0.5155635944 -0.1001018991 - 0.07866949412 I
-13.82382577 + 18.61045683 I -0.9957739909

-13.82382577 - 18.61045683 I ~13. + 15.19868415 I
-15.95495988 + 39.42818116 I ~13. - 15.19668415 1
-15.95495988 - 39.42818116 I -14.924 + 33.19991301 1
-48.70565389 + 53.6624322 1 ~14.924 - 33.19991301 I
-48,70565389 - 53.6624322 I -44.25 + 60.55524337
-57.65121713 + 84.2123298 I -44.25 - 60.55524337
-57.65121713 - 84.2123298 I -49.68 + 52.11427444

~49.68 - 52.11427444

-62.127 + 85.0195617

-62.127 - 85.0195617
Factored form gain multiplier: -2540.565597

o

Plant Case: 7 Element: (1, 1)
Roots of Numerator Roots of Denominator

-0.1247354898 + 0.1507867306 I -0.1024173959 + 0.1705245196 I
-0.1247354898 - 0.1507867306 I -0.1024173959 - 0.1705245196 I

-13.15100429 + 15.94453429 I -0.9911429974
-13.15100429 - 15.94453429 1 -13. + 15.19868415 I
-15.73744247 + 42.0308061 1 -13. - 15.19868415 I
-15.73744247 - 42.0308061 I -14.924 + 33.19991301 I
-49.65338926 + 52.15007105 I ~14.924 - 33.19991301 I
-49.65338926 - 52.15007105 I -44.25 + 60.55524337
-55.27848421 + 83.7997727 1 -44.25 - 60.55524337
-55.27848421 - 83.7997727 1 -49.68 + 52.11427444

-49.68 -~ 52.11427444

-62.127 + 85.0195617

-62.127 - 85.0195617
Factored form gain multaiplier: 1135.56275

P S
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Plant Case: 7 Element: {1, 2}

Roots of Numerator Ronts of Denominator
1.492469696e15 -0,1024173959 + 0.1705245196 1
-0.4884913722 -0.1024173959 - 0.1705245196 I
-14.76364568 + 21.98417326 1 -0.9911429974

-14.76364568 - 21.98417326 I -13. + 15.19868415 I
-17.13211925 + 86.63467236 I -13. - 15.19868415 I
-17.13211925 - 86.63467236 I -14.924 + 33.19991301 I

-14.924 - 33.19991301 I
-62.127 + 85.0195617 I

-62.127 85.0195617 I
-14
Factored form gain multiplier: -2.479794148 10
Plant Case: 7 Element: {1, 3}
Roots of Numerator Roots of Denominator

0.05125543325 + 0.09279727562 I -0.1024173959 + 0.1705245196 I
0.05125543325 - 0.09279727562 I -0.1024173959 - 0.1705245196 I
-12.7500116 + 13.77258605 I -0.9911429974

-12.7500116 - 13.77258605 I -13. + 15.19868415 I

-15.27248324 + 39.85762008 I -13. - 15.19868415 1
-15.27248324 - 39.85762008 1 -14.924 + 33.19991301 I
-49.71988665 + 52.05911519 I -14.924 - 33.19991301 I
~49.71988665 - 52.05911519 I -44.25 + 60.55524337 I
-56.71481427 + 84.15920329 1 -44.25 - 60.55524337 1
-56.71481427 - 84.15920329 1 -49.68 + 52.11427444 1

-49.68 - 52.11427444 I

-62.127 + 85.0195617 1

-62.127 - 85.0195617 I
Factored form gain multiplier: 3138.264615

Plant Case: 7 Element: {2, 1)

Roots of Numerator Roots of Denominator
4.55231746e13 -0.1024173959 + 0.1705245196 1
-0.3210353119 -0.1024173959 - 0.1705245196 I
-14.28636138 20.61043488 ¢ -0.9911429974
-14.28636138 20.61043488 1 -13. + 15.19868415 1
-16.85701882 41.0898694 1 -13. - 15.19868415 1
-16.85701882 41.0898694 1 -14.924 + 33.19991301 I

L4 1+t

-48.21095518 54.34137954 1 ~14.924 - 33.19991301 I
-48.21095518 54.34137954 1 -44.25 + 60.55524337 1
-56.77048907 83.92975261 I -44.25 - 60.55524337 I
-56.77048907 83.92975261 I -49.68 + 52.11427444 1

-49.68 -~ 52.11427444 1

-62.127 + 85.0195617 I

-AR2.127 - 85.0195617 I

-12
Factored form gain multiplier: -1.210097356 10
Plant Case: 7 Element: {2, 2}

Roots of Numerator Roots of Denominator
-0.06201210412 -0.1024173959 + 0.170524519¢ I
-0.997365568 -0.1024173959 - 0.1705245196 1
-14.76364568 + 21.98417326 I -0.9911429974
-14.76364568 -~ 21.98417326 I -13. + 15.19868415 1
-17.13211925 + B86.63467236 I -13. - 15.19868415 1
-17.13211925 - 86.63467236 I -14.924 + 33.19991301 I

-14.924 - 73,19991301 I
-62.127 + 85.0195617 I -
-62.127 -~ 85.0195617 I

Factored form gain multiplier: -205.31292/9

Plant Case: 7 Element: {2, 3}

Roots of Numerator Roots of Denominator
1.173908901el3 -0.1024172959 + 0.1705245196 I
39.54079128 -0.1024173959 - 0.1705245196 1
-2.315207499 -0.9911429974

-12.63819681 + 39.90321185 1 -13. + 15.19868415 I
-12.638192681 - 39.90321185 I -13. - 15.19868415 I
-37.38993011 -14.924 + 33.19991301 I
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-52.37118734 + 84.09773695 I -14.924 -~ 33.19991301 I
-52.37118734 - 84.09773695 I -44.25 + 60.55524337 1
-54.,03931775 + 42,52656698 I -44.25 - 60.55524337 1
-54.03931775 - 42.52656698 I -49.68 + 52.11427444 1
-49.68 - 52.11427444 1
-62.127 + 85.0195617 I
-62.127 - 85.0195617 I

-12
Factored form gain multiplier: -3.754365152 10

Plant Case: 7 Element: {3, 1}

Roots of Numerator Roots of Denominator
0.04268509635 + 0.164622761 I -0.1024173959 + 0.1708245196 I
0.04268509635 - 0.164622761 I -0.1024173859 -~ 0.1705245196 I
-12,38055187 + 11.55457052 I -0.9911429974
-12,.38055187 - 11.55457052 I -13. + 15.19868415 I
-14.99453537 + 42.44663486 I -13. - 15.19868415 I
-14.99453537 - 42.44663486 1 -14.924 + 33.19991301 1
-50.56118572 + 50.67844403 I -14.924 - 33.19991301 1
-50.56118572 - 50.67844403 I -44.25 + 60.55524337 I
-54.3552069 + 83.74901933 I -44.25 - 60.55524337 I
-54.3552069 - 83.74901933 I -49.68 + 52.11427444 1

-49.68 - 52.11427444 I

-62.127 + 85.0195617 I

-62.127 - 85.0195617 I

Factored form gain multiplier: -612.5048551

Plant Case: 7 Element: {3, 2)

Roots of Numerator Roots of Denominator
3.942324224e13 -0.1024173959 + 0.1705245196 I
-1.374299119 -0.1024173959 -~ 0.1705245196 I
-14.76364568 + 21.98417326 I -0.9911429974

-14.76364568 - 21.98417326 I -13. + 15.19868415 I
-17.13211925 + 86.63467236 I -13. - 15.,19868415 I

-17.13211925 - 86.63467236 I -14.924 + 33.19991301 1
-14.924 - 33.19991301 1
-62.127 + 85.0195617 1

-62.127 - 85.0195617 I

-13

Factored form gain multiplier: -6.064773032 10

Plant Case: 7 Element: (3, 3}
Roots of Numerator Roots of Denominator
-0.24713078 ~0.1024173959 + 0.1705245196 I
-0.4263279097 ~0.1024173959 - 0.1705245196 I
-13.82373875 + 18.61051116 I -0.9911429974
-13.82373875 - 18.61051116 I -13. + 15.19868415 I
-15.95496621 + 39.42818184 1 -13. - 15.19868415 1
-15.95496621 - 39.42818184 I -14.924 + 33.19991301 I
-48.70564969 + 53.66243002 1 ~14.924 - 33.19991301 1
-48.70564969 -~ 53.66243002 I ~44.25 + 60.55524337
-57.65121749 + 84.21233096 I -44,25 - 60.55524337
-57.65121749 - 84.21233096 I -49.68 + 52.11427444

~49.68 -~ 52.11427444

-62.127 + 85.0195617

-62.127 - 85.0195617
Factored form gain multiplier: -2540.565597

A HH

Plant Case: 8 Element: {1, 1}
Roots of Numerator Roots of Denominator
-0.1248626979 + 0.2265757703 1 -0.1060454906 + 0.2602021439 1
-0.1248626979 - 0.2265757703 X -0.1060454906 -~ 0.2602021439 I
-~13.15087419 + 15.94459366 I -0.983886808
-13.15087419 - 15.94459366 I -13. + 15.19868415 I
-15,73744953 + 42.03080694 -13. - 15.19868415 1
-15,.73744953 - 42.03080694 -14.924 + 33.19991301 I
-49.65338458 + 52.15006843 -14.924 - 33.19991301 =
-49.65338458 - 52.15006843 -44.25 + 60.55524337 1
-55.,27848472 + 83.79977412 ~44.25 - 60.55524337 1

ot
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-55.27848472 - 83.79977412 1 -49.68 + 52.11427444 1
-49.68 - 52.11427444 1
-62.127 + 85.0195617 I
-62.127 - 85.0195617 I
Factored form gain multiplier: 1135.56275

Plant Case: 8 Element: {1, 2}

Roots of Numerator Roots of Denominator
-0.4884913722 -0.1060454906 + 0.2602021439 I
-14.76364568 + 21.98417326 I -0.1060454906 - 0.2602021439 I
~14.76264568 - 21.98417326 I -0.,983886808

-17.13211925 + 86.63467236 1 -13. + 15.19868415 1
-17.1321192% - 86.63467236 I -13. - 15.19868415 1
-1.02445188e14 -14.924 + 33.19991301 I

-14.924 - 33.19991301 1
-62.127 + 85.0195617 I
-62.127 - 85.0195617 I

=13
Factored form gain multiplier: $.419021174 10
Plant Case: 8 Element: (1, 3}
Roots of Numerator Roots of Denominator
0.05162825669 + 0.251685402 1 -0.1060454906 + 0.2602021439 I
0.05162825669 - 0.251685402 I -0.1060454906 - 0.2602021439 I
-12.75038674 + 13.77248472 1 -0.983886808
-12.75038674 - 13.77248472 1 -13. + 15.19868415 I
-15.27247434 + 39.85761769 1 -13. - 15.19868415 I
~-15.27247434 - 39.85761769 I -14.924 + 33.19991301 I
-49.71989391 + 52.05911916 1 -14.924 - 33.19991301 I
-49.71989391 - 52.05911916 I -44.25 + 60.55524337 1
-56.71481358 + 84.15920141 I -44.25 - 60.55524337 1
-56.71481358 - 84.15920141 I -49.68 + 52.11427444 1
-49.68 - 52.11427444 I
-62.127 + 85.0195617 I
-62.127 - 85.0195617 I
Factored form gain multiplier: 3138.264615
Plant Case: 8 Element: {2, 1}
Roots of Numerator Roots of Denominator
-0.3210353119 -0.1060454906 + 0.2602021439 I
-14.28636138 + 20.61043488 1 ~-0.1060454906 - 0.2602021439 I
-14.28636138 - 20.61043488 1 -0.983886808
-16.85701882 + 41.0898694 I -13. + 15.19868415 I
-16.85701882 -~ 41.0898694 I -13. - 15,19868415 1
-48.21095518 + 54.34137954 1 -14,924 + 33.,19991301 I
-48.21095518 - 54.34137954 I ~14.924 - 33.19991301 1
-56.77048907 + 83.92975261 I -44.25 + 60.55524337 1
-56.77048907 - 83.92975261 1 -44.25 - 60.55524337 1
-9,235012632e13 -49.68 + 52,11427444 I
-49.68 - 52.11427444 I
-62.127 + 85.0195617 I
-62.127 - 85.0195617 I
-13
Factored form gain multiplier: 8.947601167 10
Plant Case: 8 Element: {2, 2}
Roots of Numerator Roots of Denominator
-0.06201210412 -0.1060454906 + 0.2602021439 1
-0.997365568 -0.1060454906 - 0.2602021439 I
-14.76364568 + 21.98417326 I -0.983886808
-14.76364568 - 21.98417326 1 -13. + 15.19868415 1
-17.13211925 + 86.63467236 I -13. - 15.19868415 I
-17.13211925 - 86.63467236 I -14.924 + 33.1999%91301 1

-14.924 - 33.19991301 I

-62.127 + 85.0195617 1

-62.127 - 85.0155617 1
Factored form gain multiplier: -205.312979

Plant Case: 8 Element: {2, 3}
Roots of Numerator Roots of Denominator

39.54079128 -0.1060454906 + 0.2602021439 I
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-2.315207499

-12.63819681 + 39.90321185 I
~12.63819681 - 39.90321185 I
-37.38993011

-52.37118734 + 84.09773695 1I
-52.37118734 - 84.09773695 I
~-54.03931775 + 42.52656698 I
-54.03931775 - 42.52656698 I
-5.79471861el12

Factored form gain multiplier:

Plant Case: 8 Element: {3, 1)}

Roots of Numerator
0.04325950035 + 0.3177150712 I
0.04325950035 -~ 0.3177150712 1
-12.38113035 + 11.55453759 1
-12.38113035 - 11 35453759 I
-14.9945234 + 42.44663183 I
-14.9945234 - 42.44663183 I
~50.56119461 + 50.67844933 I
~-50.56119461 - 50.67844933 I
-54.35520589 + 83.74901675 1
-54.35520589 - 83.74901675 I

Factored form gain multiplier:

Plant Case: 8 Element: (3,
Roots of Numerator
7.433134606e13
-1.37429%119
-14.76364568 +
-14.76364568 -

+

2}

21,98417326 I
21.98417326 I
-17.13211925 I
-17.13211925 I

86.63467236
86.63467236

-0.1060454906 - 0.2602021439 I
-0.983886808

-13. + 15.19868415 1

-13. - 15.19868415 I

-14.924 + 32.19991301 I

-14.924 - 33.19991301 I
-44.25 + 60.55524337 1
-44.25 - 60.55524337 I
-49.68 + 52.11427444 1
-49.68 - 52.11427444 1
-62.127 + 85.0195617 I
I

~62.127 - 85.0195617
-11
1.140853327 10

Roots of Denominator

-0.1060454906 + 0.2602021439 1

-0.1060454906 - 0.2602021439 I

-0.983886808

~13. + 15.19868415 1

-13, - 15.19868415 I

-14,924 + 33.19991301 I

-14.924 - 33.19991301 1

-44.25 + 60.55524337

-44.25 - 60.55524337

-49.68 + 52.11427444

-49.68 - 52.11427444

-62.127 + 85.0195617

-62.127 - 85.0195617
-612.7048551

e e N N N ]

Roots of Denominator
-0.1060454906 + 0.2602021439 1
-0.1060454906 - 0.2602021439 I
-0,983886808

-13. + 15.19868415 I

-13. - 15.19868415 1

-14.924 + 33.19991301 1
-14.924 - 23,19991301 1
-62.127 + 85.0.95617 1

-62.127 - 85.0195617 I

-13

Factored form gain multiplier: -4.824875958 10

Plant Case: 8 Element: (3,
Roots of Numerator
-0.3368702557 + 0.1787330665 I
-0.3368702557 - 0.1787330665 I
-13.8235937 + 18.61060169 I
-13.8235937 - 18.61060169 I
-15.95497676 + 39.42818298 1
-15.95497676 - 39.42818298 I
-48.7056427 + 53.6624264 1
-48.7056427 - 53.6624264 1
-57.65121807 + 84.21233289 I
-57.65121807 - 84.21233289 I

3}

Factored form gain multiplier: -2540

Plant Case: 9 Element: /1,
Roots of Numerator
-0.1074664032
-13.15738138 +
-13.15738138 -~
-15.73875728 +

+

1)

15.96338795 I
15.96338795 1
42.0259814 T
42.0259814 1
52.14751366 I

-15.73875728
-49.65523805

Roots of Denominator
-0.1060454906 + 0.2602021439 I
-0.1060454906 - 0.2602021439 I
0.983886808

-13. + 15.19868415 I

-13. - 15.19868415 I

-14.224 + 33.19991301 I
-14.924 - 33.19991301 1

-44.25 + 60.55524337
-44.25 - 66.5524337
-49.68 + 52.11427444
-49.68 - 52.11427444
-62.127 + 85,0195617
-62.127 - RS 0195617
.565597

[l R N

Roots of Denom:inator
-0.05808085747
-0.9222246199

-13. + 15.19868415 1
-13. - 15.19868415 1
-14.924 + 33.19991301 I
-14.924 - 33.19991301 I
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-49.65523805 - 52.14751366 I -44.,25 + 60,55524337 1
-55.,28583411 + 83.80254913 I -44.25 - £0.55524337 1
-55,28583411 - 83,80254913 1 -49.68 + 52.11427444 1
-49.68 - 52.11427444 1
-62.127 + 85.0195617 I
-62.127 - 85.0195617 I
Factored form gain multiplier: 1114.772272
Plant Case: 9 Element: {1, 2}
Roots of Numerator Roots of Denominator
Factored form gain multiplier: 0
Plant Case: 9 Element: {1, 3}
Roots of Numerator Roots of Denominator
0.2267657372 -0.05808085747
-12.73774686 + 13.7320958 1 -0.9222246199
-12.73774€86 - 13.7320958 1 -13, + 15.19868415 1
-15.26905449 + 39.84154152 I -13. - 15.19858415 1
-15.26905449 - 39.84154152 I ~14.924 + 33.19991301 1
-49,71707966 + 52.06308354 1 -14.924 - 33.19991301 I
-49,71707966 - 52.06308354 I -44.25 + 60.55524337 I
-56.7232334 + 84.1603752 I -44,25 - 60.55524337 1
-56.7232334 - 84.1603752 I -49.68 + 52.11427444 1
-49.68 - 52.11427444
-62.127 + 85.0195617 1
-62.127 - 85.0195617 1
Factured form gain multiplier: 3081.532346
Plant Case: 9 Element: {2, 1}
Roots of Numerator Recots of Denominator
Factored rorm gain multaiplier: 0
Plant Case: 3 Element: {2, 2}
Roots of Numerator Roots of Denominator
-14.75644431 + 21.95264007 I -0.1252573635
-14.75644431 - 21.95264007 I -13. + 15.19868415 I
-17.06037998 + 86.61864862 I -13. - 15.,19866415 1
-17.06037998 - 86.61864862 I -14.924 + 33.19391301 I

-14.924 - 33.19991301 I

-62.127 + 85.0195617 I

-62.127 - 85.0195617 I
Factored form gain multiplier: -207.0716183

Plant Case: 9 Element: {2, 3}
Roots of Numerator Roots of Denominator

Factored form gain multiplier: 0

Plant Cace: 9 Element: {3, 1}

Roots of Numerator Roots of Denominator
0.2186105805 -0.05808085747
-12.35458828 + 11.45254297 I -0.9222246199
-12.35458828 ~ 11.45254297 I -13. + 15.16868415 I
~14.98296916 + 42.43676453 1 -13. - 15.19868415 I
-14.98296916 - 42.43676453 1 -14.924 + 33.19991301 I
-50.57188104 + 50.65834723 I -14.924 - 33.19991301 1
-50.57188104 - 50.65834723 I -44.25 + 60.55524337
-54.35317582 + 83.75141081 I -44.25 - 60.55524337
-54 35317582 - 83.,75141081 1 -49.68 + 52.11427444

-49.68 - 52.11427444

-62.127 + 85.0195617

-62.127 - 85.0195617
Factored form gain multiplier: -601.1576115

o

Plant Case: 9 Element: {3, 2}
Roots of Numerator Roots of Denominator

Facto "ed form gain multaiplier: 0

Plant Case: 9 Element: {3, 3}
Roots of Numerator Roots of Denominator

-0.4972244919 -0.05808085747
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-13.
-13.
-15.
-15.
-48.
-48.
-57.
~-57.

84370684 + 18.6632871 1
84370684 - 18.6632871 I
96173093 + 39.41716877 I
96173093 -~ 39.41716877 1
6967764 + 53.67744786 I
6967764 - 53.67744786 I
66651368 + 84.21444127 I
66651368 -~ 84.21444127 I

Factored form gain multiplier:

Plant Case: 10 Element: ({1,
Roots of Numerator
-0,1163877828 + 0.07493670829 I
-0.1163877828 - (0.07493670829 1
-13.1573549 + 15.96340009 I

1}

-13.1573542 - 15.96340009 1
-15.73875871 + 42.02598158 1
-15.73875871 - 42.02598158 I
-49.65523711 + 52.14751313 I
-49,.65523711 - 52.14751313 I
-55.28583421 + 83.80254941 1
-55.28583421 - 83.80254941 1

Factored form gain multiplier:

Plant Case: 10 Element: {1, 2}
Roots of Numerator
3.577031451el4
-0.4559228663
-14.75644431 + 21.95264007 1
-14.75644431 - 21.95264007 I
-17.06037998 + 86.61864862 I
-17.06037998 - 86.61864862 I

Factored form gain multiplier:
Plant Case: 10 Element: (1, 3}
Roots of Numerator
0.1920289011
-0.0903665771
-12.7378243 + 13
-12.7378243 - 1%
-15.2690527 + 39
-15.2690527 - 39
~49.71708113
-49.71708113
-56.72323326
-56.72323326

.73207494 1
.73207494 1
.84154101 1
.84154101 1
52.06308434 1
52.06308434 I
84.16037482 1
84.1€037482 I

L+ 1+

-0.9222246199
-13. + 15.19868415 1
-13. - 15.19868415 1
-14.924 + 33.19991301 1
-14.924 - 33.19991301 I
-44.25 + 60.55524337
-44.25 - 60,55524337
-49.68 + 52.11427444
-49.68 - 52.11427444
-62.127 + 85.0195617
-62.127 - 85.0195617
-2504.666237

[ e e B N A ]

Roots of Denominator
-0.09251651137 + 0.08045818654 I
-0.09251651137 - 0.08045818654 1
-0.9205298181

-13. + 15.19868415 1

-13. - 15.19868415 1

-14.924 + 33.19991301 I
-14.924 - 33.19991301 1
-44.25 + 60.55524337 1
-44.25 - 60.55524337 1
-49.68 + 52.11427444 1T
-49.68 - 52.11427444 1
-62.127 + 85.0195617 1
I

-62.127 - 85.0195617
1114.772272

Roots of Denomanator
~0.09251651137 + 0.08045818654 1
-0.09251651137 - 0.08045818654 1
-0.9205298181

-13. + 15.,19868415 I

-13. - 15.19868415 I

-14.924 + 33.199913C1 1

-14.924 - 33.19991301 I

-62.127 + 85.0195617 1

-62.127 - 85.019%617 1

-14
-5.217621504 10

Roots of Denominator
-0.09251651137 + 0.08045818654 I
-0.09251651137 - 0.08045818654 I
-0.9205298181

-13. + 15.19868415 I
-13. - 15.19868415 I
-14.924 + 33.19991301 1
-14.924 - 33.19991301 I
-44.25 + 60.55524337 I
-44.25 - 60.55524337 1
-49.68 + 52.11427444 1
-49.68 - 52.11427444 1
-62.127 + 85.0195617 1
~-62.127 - 85.0195617 1

Fectored form gain multiplier: 3081.532346

Plant Case: 10 Element: {2,
Roots of Numerator

1}

4.229210323e13
-0.3067093734
-14.32930562 + 20.71139526 1

-14.32930562 - 20.71139526 I
-16.8808181 + 41.08160672 1
-16.8808%31 - 41.08160672 I
-48.19685605 + 54.36637579 1
-48.19685605 - 54.36637579 I
-56.79467608 + 83.93352453 1

Roots of Den.minator
-0.09251651137 + 0.08045818654 I
-0.09251651137 - 0.08045818654 I
-0.9205298181

-13. « 15.19868415 1

-13. - 19.19868415 1

-14.924 « 33.19991301 1

-14.924 - 33.1999130% I

-44.25 + £0.55524337 1

-44.25 - 60.55524337 1
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-56.79467608 - 83.53352453 1 -49.68 + 52.11427444 1
-49.68 - 52.11427444 1
-62.127 + 85.0195617 I
-62.127 - 85.0195617 I

-13
Factored form gain multiplier: -6.398472426 10
Plant Case: 10 Element: {2, 2}
Roots of Numerator Roots of Denominator
-0.05808085747 -0.09251651137 +~ 0.08045818654 I
~0.9222246199 -0.09251651137 - 0.08045818654 I

-14.75644431 + 21.95264007 T -0.9205238181
-14.75644431 - 21.95264007 1 -13. + 15.19868415 I
-17.06037998 + 86.61864862 I -13. - 15.19868415 I
-17.06037998 - 86.61864862 I -14.924 « 33.19991301 I
-14.924 - 33.19991301 1
-62.127 + 85.0195617 I
-62.127 - 85.0195617 I
Factored form gain multaplier: -207.0716183

Plant Case: 10 Element: {2, 3}

Roots of Numerator Roots of Denom:nator
41.37265586 -0.09251651137 + 0.08045818654 I
-2.106815802 -0.09251651137 - 0.08045818654 1

-12.60304461 + 39.82989704 -0.9205298181
-12.60304461 - 39.82989704 -13. « 15.19868415 I
-38.33750044 -13. - 15.19868415 1

L M o]

-52.26776194 + 84.09718122 I -14.924 + 33.19991301 1
-52.26776194 - 84.09718122 1 ~14.924 - 33.19991301 1
-54.06240993 + 42.18963712 I -44.25 + 60.55524337 1
-54.06240993 -~ 42.18963712 1 -44.25 - 60.55524337 1
-2.10325088el13 -49.68 + 52.11427444 1

-49.68 - 52.11427444 1

-62.127 + 85.0195617 1

-62.127 - 85.0195617 1

-13
Factored form gain multiplier: 9.983564129 10
Plant Case: 10 Element: (3, 1}

Roots of Numerator Roots of Denominator
0.1678720891 -0.09251651137 + 0.08045818654 1
-0.07427813514 -0.09251651137 - 0.08045818654 1
-12.35470947 + 11.45253655 1 -0.9205298181
-12.35470947 - 11.45253655 I -13. + 15.19868415 I
-14.98296676 + 42.43676389 I -13. - 15.19868415 I
-14.98296676 - 42.43676389 I -14.924 + 33.19991301 1
-50.57188284 + 50.6583483 1 -14.924 - 33.19991301 I
-50.57188234 - 50.6583483 I -44.25 + 60.55524337 1
~-54.35317562 + 83.75141029 I -44.25 - 60.55524337 I
-54.35317562 -~ 83.75141029 I -49.68 + 52.11427444 1

-49.68 - 52.11427444 1

-62.127 + 85.0195617 I

-62.127 - 85.019%617 1
Factored form gain multiplier: -601.157611S

Plant Case: 10 Element: {3, 2}

Roots of Numerator Roots of Denominator
-1.269098079 -0.09251651137 + 0.08045818654 I
-14.75644431 + 21.95264007 I -0.09251651137 - 0.080458185654 I
-14.75644431 - 21.95264007 I -0.9205298181
-17.06037998 + 86.61864862 I -13. + 15.19868415 I
-17.06037998 - 86.61864862 I -13. - 15.19868415 1
-2.482068322e14 -14.924 + 33.19991301 I

-14.924 - 33.19991301 I
-62.127 + 85.0195617 I
-62.127 - 85.0195617 1

-14
Factored form gain imultiplier: 4.855706176 10




Plant Case: 10 Element: {3, 3}
Roots of Numerator

-0.1480793875
-0.474469106

-13.84367768 + 18.66330543 I
-13.84367768 -~ 18.66330543 T
-15.96173305 + 39.41716903 I
-15.96173305 - 39.41716903 I

-48.696775 + 53.67744713 1
-48.696775 - 53.67744713 1
-57.6665138 + 84.21444165 I
-57.6665138 - 84.21444165 I

Roots of Denom:inator
-0.09251651137 + 0.0804581bc >4 I
~0.09251651137 - 0.08045818654 I
-0.9205298181

-13. + 15.19868415 1

-13. - 15.19868415 I

-14.924 + 33.19991301 1

-14.924 - 33.,19991301 I

-44.25 « 60.55524337
~44.25 - 60.55524337
-49.68 + 52.11427444
-49.68 - 52.11427444
-62.127 + 85.0195617
-62.127 - 85.0195617

R R N R

Factored form gain multiplier: -2504.666237

Plant Case: 11 Element: {1, 1}
Roots of Numerator
-0.1164654839 + 0.1506634327 1
-0.1164654839 - © 506634327 1
-13.15727545 15.96343649 I

+ I
-13.15727545 - 15.96343649 I
-15.73876299 + 42.02598215 I
-15.73876299 - 42.02598215 I
-49.65523427 + 52.14751154 I
-49.65523427 - 52.14751154 I
-55.,28583452 + 83.80255028 I

- I

-55.28583452 - 83.80255028

Roots of Denominator
-0.09496889422 » 0.1716153858 I
-0.09496889422 - 0.1716153858 I
-0.9156250524

-13., + 15.19868415 1

-13. - 15.19868415 1

-14.924 + 33,19991301 I

-14.924 - 33.19991301 I

-44.,25 + 60.,55524337
-44.25 - 60,55524337
-49.68 + 52.11427444
-49.68 - 52.11427444
-62.127 + 85.0195617
-62,127 - 85.0195617

o

Factored form gain multiplier: 1114.772272

Plant Case: 11 Element: {1, 2}
Roots of Numerator
-0.4559228663
-14.75644431 + 21.95264007 I
-14.75644431 - 21.95264007 I
-17.06037998 + 86.61864862 I
-17.06037998 - 86.61864862 I
-1.581103735e14

Factored form gain multiplier: 2

Plant Case: 11 Element: {1, 3}
Roots of Numerator
0.05106210417 + 0.1148581251 I
0.05106210417 ~ 0.1148581251 I
-12.73805662 13.7320124 1
-12.73805662 13.7320124 1
-15.26904733 39.84153948
-15.26904733 39.84153948
-49.,71708553 52.06308674
-49.71708553 52.06308674
-56.72323285 84.16037367
~56.72323285 84.16037367

LI T B N BN I I 4

M

Roots of Denominator
-0.09496889422 + 9.1716153858 I
-0.09496889422 ~ 0.1716153858 I
-0.9156250524

-13, + 15.19868415 I

-13. - 15.19868415 X

-14.924 + 33.19991301 I

-14.924 - 33.19991301 I
-62.127 + 85.0195617 1
-62.127 - 85.0195617 1

-13

.360831337 10

Roots of Denominator
-0.09496889422 + 0.1716153858 1
-0.09496889422 - 0.1716153858 I
-0.9156250524

-13, + 15.19868415 I

-13. - 15.19868415 I

-14.924 + 33.19991301 1

-14.924 - 33.19991301 I

-44.25 + 60.55524337
-44.25 - 60.55524337
-49.68 + 52,11427444
-49.68 - 52.11427444
-62.127 + 85.0195617
-62.127 - 85.0195617

ot

Factored form gain multiplier: 3081.532346

Plant Case: 11 Element: 2, 1}
Roots of Niierator
6.109969385e13
-0.3067093734
~14.32930562 + 20.71139526 I
-14.32930562 - 20.71139526 I
-16.8808181 + 41.08160672 I

Roots of Denominator
-0.09496889422 + 0.1716153858 I
-0.09496889422 - 0.1716153858 I
-0.9156250524

-13. + 15.19868415 I

-13. - 15.19868415 1




~16.8808181 - 41.08160672 I -14.924 + 33.19991301 1

-48.19685605 + 54.36637579 I -14.924 - 33.19991301 I
-48.19685605 - 54.36637579 1I -44.25 + 60.55524337 I
-56.79467608 + 83.93352453 I -44.25 - €0.55524337 I
-56.79467608 - 83.93352453 1 -49.68 + 52.11427444 1
-49.68 - 52.11427444 1
-62.127 + 85.0195617 I
-62.127 - 85.0195617 I

Factored form gain multiplier: -8.857813824 10

Plant Case: 11 Element: {2, 2}

Poots of Numerator Roots of Denominator
-0.05808085747 -0.09496889422 + 0.1716153858 I
-0.9222246199 -0.09496889422 - 0.1716153858 I
-14.75644431 + 21.95264007 I -0.9156250524

-14.75644431 - 21.95264007 1 -13. + 15.19868415 T
-17.06037998 + 86.61864862 I -13. - 15.19868415 1
-17.C6037998 - 86.61864862 I -14.924 + 33.19991301 I

-14.924 - 33.19991301 I

-62.127 + 85.0195617 I

-62.127 - 85.0195617 1
Factored form gain multiplier: -207.0716183

Plant Case: il Element: {2, 3)

Roots of Numerator Roots of Denominator
8.842029721el12 -0.09456889422 + 0.1715153858 1
41.37265586 -0.09496889422 - 0.1716153858 1
-2.106815802 -0.9156250524

-12.60304461 + 39.82989704 -13. + 15.19868415 I
-12.60304461 - 39.82989704 -13. - 15.19868415 1
-38.33750044 -14.924 + 33.19991301 I

[l

-52.26776194 + 84.09718122 1 -14,924 -~ 33.,19991301 :

-52.26776134 - 84.09718122 1 -44.25 + 60.55524537 1

-54.06240993 + 42.18963712 I -44.25 - 60.55524337 1

-54.06240993 - 42.18963712 T -49.68 ~ 52.11427444 1
-~49.68 -~ 52.11427444 I
-62.127 + 85.0195617 I
-62.127 ~ 85.0195617 1

-12
Factored form gain multaplier: -4.749574635 10
Plant Case: 11 Element: {3, 1)
Roots of Numerator Roots of Denominator

C 14715806566 + 0.1733354442 I -0.09496889422 + 0.1716153858 I
0.04715806566 - 0.1733354442 I -0.09496889422 - 0.1716153858 I
~-12.35507299 11.45251738 -0.9156250524

12.35507299 11.45251738 -13. + 15.19868415 1
-*4,98295953 42.43676196 -13. - 15.19868415 I
-14.98225953 42.43676196 -14.924 + 33.19991301 I
~50.57188823 50.65835151 -14.924 - 33.19991301 I

[N 2NN I S 2
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-50.57188823 50.65835151 -44.25 + 60.55524337 1
-54.353175.? 83.75140872 -44.25% - 60.55524337 1
~54.35317501 83.75140872 -49.68 + 52.11427444 1

-49.68 - 52.11427444 1

-62.127 + 85.0195617 I

-62.127 - 85.0195617 1
Factored form gain mult-olier: -601.157611%5

Plant Case: 11 Element: {Z 2}

Roots of Numerator Roots of Denominator
-1.269098079 -0.09496889422 + 0.1716153858 1

~-14.75644431 + 21.95264007
-14.75644431 - 21.95256400/
-17.060379%8 + B86.61864862 -13. + 15.19868415 1
-17..6037998 - 86.61854862 -13. - 15.19868415 1
-2.899247865el14 -14.224 + 33.19991301 1
-14.924 - 33.19991301 I
-30.127 + 85.0195617 1

-0.09496889422 - 0.1716153858 I
-0.9156250524

[ N BEe o |
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-62.127 - 85.0195617 I

-14

Factored form gain multiplier: 8.317364189 10

Plant Case: 11 Element: (3, 3}
Roots of Numerator Roots of Denominator
-0.2588710912 -0.09496889422 + 0.1716153858 I
-0.3638473257 -0.09496889422 - 0.1716153858 I
-13.84359022 + 18.66336039 I -0.9156250524
-13.84359022 - 18.66336039 I -13. + 15.19868415 I
-15.96173941 + 39.41716979 1 -13. - 15.19868415 I
-15.96173941 - 39.41716%79 I -14.924 + 33.19991301 1
-48.69677078 + 53.6774443S5 1 -14.924 - 33.19991301 I
-48.69677078 - 53.67744495 1 -44 .25 + 60.55524337
-57.66651415 + 84.21444281 1 -44.25 - 60.55524337
-57.66651415 -~ 84.21444281 I -49.68 + 52.11427444

-49.68 - 52.11427444

-62.127 + 85.0195617

-62,127 - 85.0195617
Factored form gain multiplier: -2504.666237

P

Plant Case: 12 Element: {1, 1)
Roots of Numerator Roots of Denominator
-0.1165949957 + 0.2262142133 1 -0.0987696648 + 0.2613288017 I
-0.1165949957 - 0.22€2142133 I -0.0987696648 - 0.2613288017 I

-13.15714302 + 15.96349716 1 -0.9080235113
-13.15714302 - 15.96349716 I -13. + 15.19868415 I
-15.73877012 + 42.02598308 I -13. - 15.19868415 I
-15.73877012 - 42.02598308 1 -14.924 + 33.19991301 I
-49.65522953 + 52.14750889 1 -14,924 - 33.19991301 1
-49.65522953 - 52.14750889 I -44.25 + 60.55524337 1
-55.28583503 + 83.80255171 I -44.25 - 60.55524337 1
-55.28583503 - 83.80255171 I -49.68 + 52.11427444 1

-49.68 - 52.11427444 1

-62.127 + 85.0195617 I

-62.127 - 85.0195617 I
Factored form gain multiplier: 1114.772272

Plant Case: 12 Element: {1, 2}

Roots of Numerator Roots of Denominator
4.795727355e14 -0.0987696648 + 0.2613288017 I
~-0.4559228663 -0.0987696648 - 0,2613288017 I
-14.75644431 + 21.95264007 1 -0.9080235113
~14.75644431 - 21.95264007 I -13. + 15.19868415 I
-17.06037998 + 86.61864862 1 -13. - 15.19868415 I
-17.06037998 - 86.61864862 I -14.924 + 33.19991301 1

-14.,924 - 33.19991301 I
-62.127 + 85.0195617 1
~62.127 - 85.0195617 I

-13
Factored form gain multiplier: -1.167514008 10

Plant Case: 12 Element: (1, 3}
Roots of Numerator Roots of Denominator
0.05144702817 + 0.2615448508 I -0.0987696648 + 0.2613288017 1
0.05144702817 - 0.2615448508 I -0.0987696648 - 0.2613288017 1

-12.73844385 + 13.73190828 I -0.9080235113
-12.73844385 - 13.73190828 I -13. + 15.19868415 I
~15.26903839 + 39.84153694 I -13. - 15.19868415 I
-15.26903839 - 39.84153694 I -14.924 + 33.19991301 I
~49.71709287 + 52.06309075 I -14.924 - 33.19991301 I
-49.71709287 - 52.06309075 I -44.25 + 60.55524337
-56.72323216 + 84.16037177 1 -44.25 - 60.55524337
-56.72323216 - 84.16037177 I -49.68 + 52.11427444

-49.68 - 52.11427444

-62.127 + 85.0195617

-62.127 - 85.0195617
Factored form gain multiplier: 3081.532346

P e e

Plant Case: 12 Element: {2, 1}
Roots of Numerator Roots of Denominator




-0.3067093734 -0.0987696648 + 0.2013288017 T
-14.32930552 + 20.71139%26 T -0.0987696648 0.26.32880'7 1
-14.32930562 - 20.71139%26 1 -0.9080235113
-16.8€08181 « 41.08160672 1 13, + 15.198684i% I
-16.8808181 - 41.08160672 1 13, - 15.19868415 :
-48.19685605 + 54.36637579 1 -14.924 + 33.1999130% 1
-48.19685605 -~ 54.36637579 1 -14.924 - 33.19991301 1
-56.79467608 + 83.93352453 1 -44.25 + 60.55524337 1
-56.79467608 - 83.93352453 1 -44.25 -~ 60.55524337 1
-4.825427599%e13 -49.68 + 52.11427444 1

-49.68 - 52.11427444 1

-62,127 + 85.0195617 I

-62.127 - 85.0195617 1

-12
Factored form gain multiplier: 1.682368148 10
Plant Case: 12 Element: {2, 2}

Roots of Numerator Roots of Denominator
-0.05808085747 -0.0987696648 + 0.2613288017 I
-0.9222246199 -0.0987696648 - 0.2613288017 I
-14.,75644431 + 21,95264007 1 -0.9080235113
-14.75644431 ~ 21.95264007 1 -13. + 15,19868415 T
-17.06037998 + 86.61864862 I -13. - 15.19868415 1
-17.06037998 - 86.61864862 1 -14.924 + 33.19991301 1

-14.,924 - 33.19991301 I

-~62.127 + 85.0195617 I

-62.127 - 85.0195617 1
Factored form gain multiplier: -207.0716183

Plant Case: 12 Element: {2, 3}

Roots of Numerator Roots of Denominator
5.937054509e13 -0.0987696648 + 0.2613288017 I
41.37265586 -0.0987696648 - 0.2613288017 T
-2.106815802 -0.9080235113

-12.60304461 + 39.82989704 I -13, + 15.19868415 1
-12.60304461 - 39.82989704 1 -13. - 15.19868415 1

-38.33750044 -14.924 + 33.19991301 I
-52.26776194 84.05718122 -14.924 - 33.19991301 1

+ I

-52.26776194 - 84.09718122 I -44.25 + 60.55524337 1

-54.06240993 + 42.18963712 I ~-44.25 - 60.55524337 1

-54 06240993 - 42.18963712 I 49,68 + 52.11427444 1
-49.68 - 52.11427444 1
-52.127 + 85.019%617 1
-62.127 - 85.0195617 I

-12
Factored form gain multiplier: -1,0610281%58 10
Plant Case: 12 Element: {3, 1)
Roots of Numerator Roots of Denominator

0.04775982445 + 0.3233355681 1 -0.0987696648 + 0.2613288017 1
0.04775982445 - 0.3233355681 1 -0.0987696648 - 0.2613288017 I

~12.35567882 + 11.45248572 1 -0.9080235113
-12.35567882 - 11.45248572 1 -13. + 15.19868415 1
-14.98294748 + 42.43675873 1 -13. - 15.19368415 1
-14.98294748 - 42.43675873 1I -14.924 + 33.19991301 I
-50.57189723 + 50.65835636 I -14.924 - 33.19991301 1
-50.57189723 - 50.65835686 1 -44.25 « 60.55524337 1
-54.35317399 + 83.75140611 1 -44.25 - 60.55524337 1
~54.35317399 - 83.75140611 1 -49.68 + 52.11427444 1

-49.68 - 52.114927444 1

-62.127 + 85.,0195617 1

-62.127 - 85.0195617 1
Factored form gain multiplier: -601.1576115

Plant Case: 12 Element: (3, 2}

Roots of Humerator Roots of Denominator
3.031142654e14 -0.0987696648 + 0.2613288017 I
-1.269098079 -0.0987696648 - 0.2613288017 I

-14.75644431
-14.75644431
-17.06037998
-17.06037998

21.95264007
21.95264007
86.61864862
8€.61864862

-(0.9080235113

-13. + 15.19868415 1
-13. - 15.19868415 1
14.924 + 33.19991301 1
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-14.924 33.19991301 1
-62.127 + 85.0195617 I
-62.127 - 85.0195617 I

-13
Factored form gain multiplier: -1.193317329 10
Plant Case: 12 Element: {3, 3}
Roots of Numerator Roots of Denominator

-0.3115008272 + 0.1924602727 I -0.0987696648 + 0.2613288017 I
-0.3115008272 -~ 0.1924602727 I -0.0987696648 - 0.2613288017 I

-13.84344444 + 18.66345199 T -0.9080235113
-13.84344444 - 18.66345199 I -13. + 15.19868415 I
-15.96175001 + 39.41717105 I -13. - 15.19868415 I
-15.96175001 - 39.41717105 I -14.924 + 33.19991301 I
-48.69676376 + 53.67744132 I -14.924 - 33.19991301 I
-48.69676376 - 53.67744132 1 -44.25 + 60.55524337 1
-57.66651474 + 84.21444475 I -44.25 - 60.55524337 I
-57.66651474 - 84.21444475 I -49.68 + 52.11427444 I
-49.68 - 52.11427444 I
-62.127 + 85.0195617 I
-62.127 - 85.0195617 T
Factored form gain multipiier: -2504.666237
C.2. Effective Plant Bode Plot
MISO loop (1,1} MISO loop (1,2} MISO loop {1,3}
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Figure 80. Effective Plant Bode Plot
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Appendix D: Q Matrix Transfer Functions

This chapter presents the Q matrix transfer functions for each of the twelve plant cases, after pole-

zero cancellation. The twelve cases are defined in the MIMO QFT CAD Package as:

Current List of Plant Models

Plant Comments Parameter Value

#1 h 10000
p 0

#2 h 10000
14

#3 h 10000
P 16

#4 h 10000
p 24

#5 h 15000
P 0

#6 h 15000
P 8

#7 h 15000
p 16

#8 h 15000
P 24

#9 h 209¢0
P 0

#10 h 20000
P 8

#11 h 20000
p 16

#12 h 20000
P 24
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D.1. Q matrix Transfer Functions
Choice> 2 Q Matrix s-Domain Transfer Functions
Plant Case: 1 Element: {1, 1}

Roots of Numerator Roots of Denominator
-15.59512403 41.,20031139 ~-0.57779199
-15.59512493 41.20031139 -13.80372315

+
- 18.55693714
-21.79695528 + 32.80306822 -13.8037231%
+

18.55693714
39.43184289
.43184289%
53.64893544
53.64893544
84.21130541
84.21130541

-21.79695528 32,80306822 -15.94702152
-55.80497644 83.93079561 -15.94702152
-55.80497644 83.93079561 -48,71359453
-48.71359453
-57.64123437
-57.64123437
Factored form gain multiplier: 382.6380294

o H A
[ S B B I N S

L

Ate]

o

Plant Case: 1 Element: {1, 2}
Roots of Numerator Roots of Denominator
;;;;;;;Q_E;;%-;;E; multiplier: anEBIEQ --------------
Plant Case: 1 Element: (1. 3}

Roots of Numerator Roots of Denominator

-15.59512403 + 41.20031139 I 0.250583541

-15.59512403 - 41.20031135 I ~12.76209141 - 13.81487535 1

-21.79695528 + 32.80306822 I -12,76209141 - 13.81487535 1

-21.79695528 - 32.80306822 1 -15.27589594 + 39.8708367 1

-55,80497644 + 83.93079561 1 -15,27589594 - 39.8708367 I
- I +

-55.80497644 83.93075561 -49.72241744 + 52.05562842 I
~49.72241744 - 52.05562842 I
-56.7085719 + 84.15858497 I
-56.7089719 - 84.15858497 I

Factored form gain multiplier: 308.7619259
Plant Case: 1 Element: (2, 1}
Roots of Numerator Roots of Denominator

Factored form gain multiplier: Infinity

Plant Case: 1 Element: (2, 2}

Roots of Numerator Roots of Denominator
-14.76581091 + 21.99367018 I -0.14852847¢02
-14.76581091 - 21.99367018 I -13, + 15.19868415 I
-17.15376289 ~ 86.63948955 I -13. - 15.19868415 I
-17.15376289 - 86.63948955 I -14.924 + 33.199%81301 1

-14.924 - 33.19991301 1

-62.127 + 85.0195617 I

-62.127 - 85.0195617 I
Factored form gain multaiplier: -204.4085555

Plant Case: 1 Element: {2, 3)
Roots of Numerator Roots of Denominator

Factored form gain multiplier: Infinity

Plant Case: 1 Element: {3, 1}

Roots of Numerator Roots of Denominator
-15.59512403 + 41.20031139 1 0.2226635869
-15.59512403 - 41.20031139 1 -12.40529826 + 11.65364509 1
-21.79695528 + 32.80306822 I -12.40529826 - 11.65364509 1
-21.79695528 - 32.80306822 I -15.00543659 +« 42.44927428 I
-55.80497644 + 83.93079561 I -15.00543659 - 42.44927428 I
-55.80497644 -~ 83.93079561 I -50.55177141 + 50.69631972 1
-50.55177141 - 50.69631972 T
-54.36332547 + 83.74883311 I
- I

-54.36332547 83.74883311
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Factored form gain multaplier: -1579.712919
Plant Case: 1 Element: {3, 2}
Roots of Numerator Roots of Denominator
Factored form gain multiplier: Infimcy
Plant Case: 1 Element: (3, 3}

Roots of Numerator Roots of Denominator

~15.59512403 + 41.20031139 I -0.1180659113

-15.59512403 - 41.20031139 1 -13.1445853 + 15.92479066 1

-21.79695528 + 32.80306822 1 -13.1445853 - 15.92479066 1

-21.79695528 - 32.80306822 1 -15.73553132 + 42.03227768 I

~-55.80497644 + 83.93079561 I -15.73553132 - 42.03227768 I

-55.80497644 - 83.93079561 I -49.65172678 + 52.15231675 [
-49.65172678 - 52.15231675 I
-55.27372311 + 83.79775981 1
-55.27372311 - 83.79775981 I

Factored form gain muitiplier: -853.041063

Plant Case: 2 Element: {1, 1)

Roots of Numerator Roots of Denominator

-15.59512402 + 41.20031139 1 ~-0.57779199

-15.59512403 -~ 41,20031139 1 -13.80372315 + 18.55693714 1

-21.79695528 + 32.80306822 I -13.80372315 -~ 18.55693714 1

-21.79695528 - 32.80306822 1 -15.94702152 + 39.43184289 I

-55.80497643 + 83.9307956 I -15.94702152 - 39.43184289 1

-55.80497643 - 83.9307956 I ~-48.71359453 + 53.64893544 1
-48.71359453 - 53.64893544 1
-57.64123437 + 84.21130541 I
-57.64123437 -~ 84.21130541 I

Factored form gain multiplier: 382.6380294

Plant Case: 2 Element: {1, 2}

Roots of Numerator Roots of Denominator

-15.59512403 + 41.20031139 I -13.35678088 + 16.63402383 I

-15.54512403 -~ 41.20031139 1 -13.35678088 - 16.63402383 I

-21.79695528 + 32.89306822 1 -15.63942316 + 39.65306512 1

-21.79695528 - 32.80306822 I ~15.63942316 - 39.65306512 I

-55.80497643 + 83.9307956 I -49.17612021 + 52.93500268 I

~-55.80497643 - 83.9307956 I -49.17612021 -~ 52,93500268 1
~57.21442398 + 84.18185775 I
-57.21442398 - 84.18185775 I

Factored form gain multiplier: 2357.550639

Plant Case: 2 Element: {1, 3}

Roots of Numerator Roots of Denominator
-15.59512403 + 41.20031139 I 0.250583541

-15.59512403 ~ 41.20031139 1 -12.76209141 + 13.81487535 1
-21.79695528 + 32.80306822 I -12.76209141 - 13.81487535 I
-21.79695528 ~ 32.80306822 I -15.27589594 + 39.8708367 I
-55.80497643 + 83.9307956 I -15.27589594 - 39.8708367 I
-55.80497643 - 83.9307956 I -49.7°241744 + 52.05562842 I

-49.72241744 - 52.,05562842 1

-56.7089719 + 84.15858497 I

-56.7089719 - 84.15858497 I
Factored form gain multiplier: 308.7019259

Plant Case: 2 Element: {2, 1)

Rocts of Numerator Roots of Denominator
-14.76581091 + 21.99367018 I -13. + 15.19868415 1
-14.76581091 - 21.99367018 I -13. -~ 15,19868415 I
-17.15376289 + 86.63948955 1 -14.924 + 33.19991301 1
-17.15376289 - 86.63948955 I -14.924 33.19991301 1

-62.127 + 85.0195617 1
- 85.019%617 1
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Plant

Plant Case: 2

Plant Case: 2 Element:

Plant Case: 2 Element:

Plant Case: 2 Element:

Plant

Factored form gain multiplier: 3482.434837

Case: 2 Element:

{2, 2}

Roots of Numarstor

-14.76581091 + 21.
-14.76581091 - 21.
-17.15376289 + 86.
-17.15376289 - 86.

99367018 I
99367018 I
63948955 1
63948955 I

Roots of Denominator
-0.1485284702

-13. + 15,19868415 1
-13. - 15,19868415 I
-14.924 + 33.19991301 I
-14.924 - 33.19991301 1
-62.127 + 85.0195617 1
-62.127 - 85.0195617 I

Factored form gain multiplier: -204.4085555

Element:

{2, 3}

Roots of Numerator

-14.76581091 + 21.
-14.76581091 - 21.
-17.15376289 + 86.
-17.15376289 -~ 86.

Roots of Numerator

-15.59512403 + 41
-15.59512403 - 41
-21.79695528 + 32
-21.79695528 - 32
-55.80497643 + 83
-55.80497643 - 83

99367018 I
99367018 I
63948955 1
63948955 1

{3, 1}

.20031135 1
.20031139 1
.80306822 I
.80306822 I
.9307956 1
.9307956 1

Roots of Denominator
.19868415 1
.19868415 1
33.19991301 I
33.19991301 1
85.0195617 I
€5.0195617 I

0.2226635869

Factored form gain multiplier: -1579.71291%

{3, 2}

Rocts of Numerator

-15.59512403 + 41.20031139 I
-15.59512403 - 41.20031139 I
-21.79695528 + 32.80306822 I
-21.79695528 - 32,80306822 I
-65.80497643 + 83.9307956 1
-55.80437643 -~ 83.9307956 I

Factored form gain multiplier: -7980.02408

Roots of Numerator

{3, 3}

-15.59512403 + 41.20031439 I
-15.59512403 - 41.20031139 I
-21.79695528 + 32.80306822 I
-21.79695528 - 32.80306822 1
-55.80497643 + 83.9307956 I
-55.80497643 - 83.9307956 I

-12.40529826 + 11.65364509 I
-12.40529826 -~ 11.65364509 I
-15.00543659 + 42.44927428 I
-15.00543659 - 42.44927428 1
-50.55177141 « 50.69631972 I
-50.55177141 - 50.69631972 I
-54.36332547 + 83.74883311 1
-54.36332547 - 83.74383311 I
Roots of Denominator
-12.74972514 + 14.11765519 I
-12.74972514 - 14.11765519 I
-15.39829491 + 42.24727899 1
-15.398294%1 - 42.24727899 I
-50.0716342 + 51.4766149 I
-50.0716342 -~ 51.4766149 I
-54.84580086 + 83.7743349 1
-54.84580086 - 83.7743349 1
Roots of Denominator
-0.1180659113

~13.1445853 + 15.92479066 1
-13.1445853 - 15.92479066 I
-15.73553132 + 42.03227768 I
-15.73553132 ~ 42.03227768 1
-49.65172578 + 52.15231675 1
-49.65172678 - 52.15231675 1
-55.27372311 + 83.79775981 1
-55.27372311 - 83.79775981 I

Factored form gain muitiplier: ~853.0410631

Case: 3 Element:

Roots of Numerator
-15.59512403 + 41.
-15.59512403 - 41.

(1, 1}

20031139 1
20031139 1

Roots of Denominator

-0.5777913%
-13.80372315 + 18.55693714 I
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-21.79695528
-21.79695528
-55.80497644
-55.80497644

(IS N A

32.80306822 I
32.80306822 1
83.93079561 1
83.93079561 I

-13
-15
-15
-48
-48
-57
-57

.80372315
.94702152
.94702152
.71359453
.71359453
.64123437
.64123437

Factored form gain multiplier: 382.6380294

Plant Case: 3 Element: {1, 2}

Roots of Numerator

-15.59512403 +
-15.59512403 -
~-21.79695528 +
-21.79695528 -
-55.80497644 +
-55.80497644 -

41.20031139
41.20031139
32.80306822
32.80306822
83.93079561
83.93079561

bt

t 41+ 4

.55693714
.43184289
.43184289
.64893544
.64893544
.21130541
.21130541

o e

Roots of Denominator

-57

.35678088
.35678088
.63942316
.63942316
.17612021
.17612021
.21442398
.21442398

Factored form gain multiplier: 1178.775319

Plant Case: 3 Element: {1, 3}

Roots of Numerator

-15.59512403 +
-15.59512403 -
-21.79695528 +
-21.79695528 -
-55.80497644 «+
-55.80497644 -

41.20031139
41.20031139
32.80306822
32.80306822
87.93079561
83.93079561

O

[ SN A

.63402383
.63402383
.65306512
.65306512
.93500268
.93500268
.1818%775
.18185778%

ok bt

Roots of Denominator

0.2
-12
-12

-15.
-15.
-49.
-49.
-56.
-56.

50583541

.76209141
.76209141
27589594
27589594
72241744

Factored form gain multiplier: 308.7019259

Plant Case: 3 Element: (2, 1}

Roots of Numera
-14.76581091 +
-14,76581091 -
-17.15376289 +
-17.15376289 -

Factored form gain multiplier:

tor

21.983(°018 I
21.99367018 I
86.63948955 1
86.63948955 1

Plant Case: 3 Element: {2, 2)

Roots of Numera
-14.76581091 +
-14,76581091 -
-17.15376289 «+
-17.15376289 -

tor

21.99367018 I
21.99367018 I
86.63948955 I
86.63948955 1

Plant Case: 3 Element: {2, 3}

Roots of Numera
-14.76581091
-14.76581091
-17.15376289
-17.15376289

LI S B

Plant Case: 3 Element:

tor

21.99367018 I
21.99367018 1
86.63948955 I
86.63948955 I

{3, 1)

Roots of Numerator

4o+

+

.81487535 T
.81487535 I
.8708367 I

.8708367 I

.05562842 I
72241744 - S2.
7089719 + 84.15858497 I
7089719 - 84.15858497 I

05562842 1

Roots of Denominator

. + 15,19868415 I

. - 15,19868415 1
.924 + 33.19991301 X
.924 - 33.19991301 1
.127 + 85.0195617 1
.127 ~ 85.0195617 I

1741.217419

Roots of Denominator

-0.1485284702

-13
-13

-14

.+ 15,19868415 I

. - 15,19868415 I
-14.924 + 33.19991301 1
.924  33.19991301 I
-62.127 + 85.0195617 I
-62.127 - 85.0195617 I
Factored form gain multiplier: -204.4085555

Roots of Denominator
.+ 15.19868415 I

. = 15.19868415 I
.924 + 33.19991301 I
.924 - 33.1999%1301 I
.127 + 85.0195617 I
.127 - 85.0195617 T
Factored form gain multiplier: 1601.135053

-62

Roots of Denominator
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-15.59512403 ~ 41.20131139
-15.59512403 - 41.2. .1139
-21.79695528 + 32.80306822
-21.79695528 - 32.80306822
-55.80497644 + 83.33079561
-55.80497644 ~ £3.930 :51

-

0.2226635869

-12.40529826 + 11.65364509
-12.40529826 -~ 11.65364509
-15.00543659 + 42.44927428
-15.00543659 - 42.44927428
-50.55177141 + 50.69631972
-50.55177141 - 50.69631972
-54.36332547 + 83.74883311
-54.36332547 - 83.74883311

Factored form gain rmultiplier: -1579.712919

Plant Case:

3 Element:

{3, 2}

Roots of Numerator

-15.59512403 + 41.20031139
-15.59512403 - 41.20031139
-21.79695528 + 32.80306822
-21.79695528 -~ 32.80306822
-55.80497644 + 83.93079561
-55.80497644 - 83.93079561

SR N R Nl ]

Roots of Denominator

-12.74972514 + 14.11765519
-12.74972514 - 14.11765519
-15.39829491 + 42.24727899
-15.39829491 - 42.24727899
-50.0716342 + 51.4766149 I
-50.0716342 - 51.4766149 I
-54.84580086 +« 83,7743349 I
-54.84580086 - 83.7743349 1

Factored form gain multiplier: -3990.01204

Plant Case:

3 Element:

{3, 3}

Roots of Numerator

-15.59512403 + 41.20031139
-15.59512403 - 41.20031139
-21.79695528 + 32.80306822
-21.79695528 - 32.80306822
-55.80497644 + 83.93079561
-55.80497644 - 83.93079561

e e N N N N

Roots of Denominator
-0.1180659113

-13.1445853 + 15.92479066 I
-13.1445853 - 15.92479066 I
-15.73553132 42.03227768
-15.73553132 42.,03227768
-49.65172678 52.15231675
-49,65172678 52.15231675
-55.27372311 83.79775981
-55.27372311 83.79775981

[N I B S

Factored form gain multaplier: -853.041063

Plant Case:

4 Element:

(1, 1}

Roots of Numerator

-15.59512403 + 41.20031139
-15.59512403 - 41.20031139
-21.79695528 + 32.80306822
-21.79695528 - 32.80306822
-55.80497644 + 83.93079561
-55.80497644 - 83.93079561

RN R N N ]

Roots of Denominator

-0.57779199

-13.80372315 + 18.55693714
-13.80372315 - 18.55693714
-15.94702152 + 39.43184289
-15.94702152 - 39.43184289
-48.71359453 + 53.64893544
-48.71359453 - 53.64893544
-57.64123437 + 84.21130541
-57.64123437 - 84.21130541

Factored form gain multiplier: 382.6380294

Plant Case:

4 Element:

{1, 2}

Roots of Numerator

-15.59512403 + 41.20031139
-15.59512403 - 41.20021139
-21.79695528 + 32.80306822
-21.79695528 - 32.80306822
-55.80497644 + 83.93079561
-55.80497644 - 82.93079561

o

Roots of Denominator

-13.35678088 16.63402383
-13.35678088 16.63402283
-15.63942316 39.65306512
-15.63942316 .65306512
-49.17612021 52.93500268
-49.17612021 £2.93500268
-57.21442398 84.18185775
-57.21442398 84.18185775

A L+ o+
W
v

Factored form gain multiplier: 785.8502129

Plant Case:

4 Element:

{1, 3)

Roots of Numerator
-15.59512403 + 41.20031139 I
-15.59512403 - 41.20031139 I
~21.79695528 + 32.80306822 I

Roots of Denominator

0.250583541
-12.76209141 + 13.81487535
-12.76209141 - 13.81487535
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-21.,79€95528 - 32.80306822 I -15.27589594

+ 39.8708367 I
-55.80497644 + 83.93079561 I -15.27589594 - 39.8708367 I
-55.80497644 - 83.930795%61 I -49.72241744 + 52.05562842 I

-49.72241744 52.05562842 1

-56.7089719 + 84.15858497 1

-56.7089719 - 84.15858497 I
Factored form gain multiplier: 308.701925%

P'ant Case: 4 Element: (2, 1)

Roots of Numerator Roots of Denominator
-14.76581091 + 21.99307018
-14.76581091 - 21.99367C18
-17.15376282 + 86.63948955
~17.15276289 - 86.63948955

-13. + 15.19868415 I
.19868415 1
-14.924 + 33.19991301 1
-14.924 - 33.19991301 I
~62.127 + 85.0195617 I
-62.127 - 85.0195617 I
Factored form gain multiplier: 1160.811612

oA HMH
|
[0y
w
1
-
v

Plant Case: 4 Element: {2, 2}

Roots of Numerator Roots of Denominator
-14.76581091 + 21.99367018 I -0.1485284702
-14.76581091 - 21.99367018 I -13. + 15.19868415 I
-17.15376289 + 86.63948955 I -13. - 15.19868415 I
-17.15376289 - 86.63948955 I -14.924 + 33.19991301 =

-14.924 - 33.19991301 I
-62.127 + 85.0195617 1
-62.127 - 85.0195617 I
Factored form gain multiplier: -204.4085555

Plant Case: 4 Eliement: {2, 3

Roots of Numerator Rocts of Denominator
-14.76581091 + 21.99367018 I -13. + 15.19868415 1
-14.76581091 - 21.99367018 I -13. - 15.19868415 I
-17.15376289 + 86.63948955 1 -14.924 + 33.19991301 1
-17.153762L9 - 86.63948955 I -14.924 - 33.19991301 I

-62.127 + 85.0195617 1
-62.127 - 85.0195617 I
Factored form gain multiplier: 1067.423°59%

Plant Case: 4 Element: {3, 1)

Roots of Numerator Roots of Denominator
-15.59512403 + 41.20031139 I 0.2226635869
-15.59512403 - 41.22031139 I -12.40529826 + 11.653€4509 I
-21.79695528 + 32.80306822 I -12.40529826 - 11.€3364509 I
-21.79695528 ~ 32.80306822 I -15.00543659 + 42.44927428 1
-55.80497644 + §3.93079561 I -15.00543659 - 42.44927428 1
-55.80497644 - 83.93075561 I -50.55177141 + 50.69631972 I
-50.,55177141 - 50.69651972 I
-54,36232547 + 83.74883311 1
-54,36332547 - 83.74883311 1
Factored form gain multipl-er. -1579.712919
Plant Case: 4 Eiement: {3, 2}
Roots of Numeratcr Roots of Denominator
-15.59512403 + 41.20031139 I -12.74972514 + 14,11765519 1
-15.59512403 - 41.20031139 1 -12.74972514 - 14.11765519 1
-21.7963552R + 32.80306822 1 -15.39829491 + 42.24727899 1
-21.79695528 - 32.80306822 1 -15.39829491 -~ 42.24727899 I
-55.80497644 + 83.92779561 1 -50.0716342 + 51.4766149 1
-55.80497644 - 83.93079541 I -50.0716342 -~ 51.376€149 1

-54.84580086 + 83.7743349 1
-54.84580086 - 83.7743349 1
Factored form gain multiplier: -2660.008027

Plant Case: 4 Element: {3, 3}

Roocs of Numerator Roots of Denominator
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-15.59512403 + 41.20031139 1
-15.59512403 - 41.20031139 I
-21.79695528 + 32.80306822 I
-21.79695528 - 32.80306822 I
-55.80497644 + 83.93079561 I
-55.80497644 -~ 83.93079561 I

Factored form gain multiplier:

Plant Case: 5 Element: {1, 1)}

Roots of Mumerator

-15.59067855 + 41.19171381 I
-15.59067855 - 41.19171381 I
-21.88667475 + 32.91n44932 I
-21.88 67475 ~ 32.91844932 I
-55.81.27537 + 03.93326683 I
-55.81227537 - 83.93326683 I

Factored form gain multiplier:

Plant Case: 5 Element: (1, 2}

Roots of Numerator

Factored form gain multiplier:

Plant Case: 5 Element: {1, 3}

Roots of Numerator

-15.59067855 + 41.19171s81 I
-15.59067855 - 41.19171381 I
-21.88667475 + 32,91844932 1
-21.88667475 ~ 32.91844932 I
-55.81227537 + 83.93326683 I
-55.81227537 - 83.93326683 1

Factored form gain multiplier:

Plant Case: 5 Element: {2, 1)

Roots of Numerator

Factored form gain multiplier:

Plant Case: 5 Flement: {2, 2}

Roots of Numerator
~14 76364568 +
~14.76364568 -
-17.13211925 +
-17.13211925 -

21.98417326 I
21.98417326 I
86.63467236 1
86.63467236 I

Factored form gain multiplier:

Plant Case: 5 Element: {2, 3}

Roots of Numeracor

Factew .

Plant Ca,e: S Element: (3, 1}

Rcots of Numerator

-15.59067855 - 41.19171251 I

form gain multiplier:

-0.1180659113

-13.1445853 + 15.92479066 I
-13.1445853 - 15.92479066 I
-15.73553132 « 42.03227768 1
-15.73553132 - 42.03227768 I
-49.65172€678 + 52.15231675 I
-43.65172678 - 52.15231675 I
-55.27372311 + 83.79775981 I
-55.27372311 - 83.79775981 I
-853.041063

Roots of Denominator
-0.536633144

-13.82385478 + 18.61043872 1
-13.82385478 - 18.61043872 I
-15.95495777 + 39.42818093 I
-15.95495777 - 39.425180°93 I
-48.70565529 + 53.66243292 I
-48.70565529 - 53.66243292 I
-57.65121702 + 84.21232942 1
-57.65121702 - 84.21232942 1

378.7116103

Roots of Denominator

Infinity

Roots of Denominator
0.2385145022
-12.74971131 +
-12,74971151 -~
-15.27249035 + 39.857€2199 1
-15.27249035 -~ 39.85762199 I
-319.68 + 52.11427444 I
~43.68 - 52.11427444 1
-56.71481482 + 84.,1592048 I
-56.71481482 - 84.1592048 I
306.6894329

13.7726672 1
13.7726672 1

Roots of Denominator

Infinity

RooLs of Denominator
-0.1366001171
-13. + 15.19* 8415 I
-13., - 15.19868415 I
-14.924 + 33.19991301 I
-14.924 - 33.19991301 I
-62.127 + 85.0195617 1
-62.127 - 85.0195617 1
-205.312979

Roots of Denominator

Infinmity

Roots of Lenom.natcr

0.2210511777




-15.59067855 - 41.19171381 I -12.38008903 + 11.5545¢71 T

-21.88667475 + 32.91844932 1 -12.38008903 - 11.8545371 1

-21,88667475 ~ 32.91844932 I -14.99454494 + 42.44663728 1

-55.81227537 + 83.93326683 I -14.99454494 - 42.44663728 1

-55.81227537 - 83.93326683 I -50.5611786 + 50.6784398
-50.5611786 - 50.6784398 I
-54.3552077 + 83.74902i4 1
~54.3552077 - 83.7490214 1

Factored form gain multiplier: -1570.318368

Plant Case: 5 Element: {3, 2}
Roots of Numerator Roots of Denominator
Factored form ga:n multaiplier: Infinmity
Plant Case: S Element: {3, 3}

Roots of Numerator Roots of Denominator

-15.59067855 + 41.19171381 I -0.1126673471

~15.59067855 - 41.19171381 I ~13.15110836 + 15.94448679 1

-21.88667475 + 32.91844932 1 ~13.15110836 - 15.94448679 I

-21.88667475 - 32.91844932 I -15.73743682 + 42.03080543 1

-55.81227537 + 83.93326683 I -15.73743682 - 42.03080543 1

-55.81227537 - 83.93326683 I -49.65339301 + 52.15007315 1T
-49.65339301 - 52.15007315 I

-55.2784838 « 83.59977156 I
-55.2784838 - 83.79977156 I
Factored form gain multiplier: -847.2818334

Plar.t Case: 6 Element: {1, 1)

Roots of Numerator Roots of Denominator
-15.59067855 + 41.19171381 I -0.536633144
-15.59067855 - 41.19171381 I -13.82385478 + 18.61043872 1
-21.88667476 + 32.91844932 I -13.82385478 - 18.61043872 1
-21.88667476 ~ 32.91844932 1 -15.95495777 + 39.42818093 1
~55.81227537 + 83.93326683 I -15.95495777 - 39.42818093 I
-55.81227537 - 83.93326683 I -48.,70565529 + 53.66243292 1
-48.70565529 - 53.66243252 I
-57.65121702 + 84.21232942 1
-57.65121702 - 84.21232942 1
Factored form gain multiplier: 378.7116103
Plant Case: 6 Element: {1, 2}
Roots of Numeratcr Roots of Denom)nator
-15.59067855 + 41.19171381 1 -13.36268454 + 16.65678235 1
-15.59067855 - 41.19171381 1 -13.36268454 - 16.65678236 I
-21.88667476 + 32.91844932 I -15.64223442 + 39.64547173 1
-21.88667476 - 32.91844932 I -15.64223442 - 39.64547173 1
-55.81227537 + 83.93326683 I -49.17003703 + 52.94480699 1
-55.81227537 - 83.93326683 I -49.17003703 - 52.9448363Y I
-57.2230€6713 + 84.18279199 1
-57.22305713 - 84.18279199 1

Factored form gain multiplicr: 2336.917026

Plant Case: 6 Element: {1, 3}

Roots of Numerator Roots of Denominator
-15.59067855 + 41.19171381 1 0.2385145022

-15.59067855 - 41.19171381 1 -12.74971151 + 13.7726672 1
-21.88667476 + 32.91844932 1 -12.74971151 - 13.7726672 1
-21.88667476 - 32.91844932 I -15.27249035 + 39.85752199 1
-55.81227537 + 83.93326683 I -15.27249035 - 39.85762199 1
-55.81227537 - 83.93326683 I -49.68 + 52.11427444 1

~49.68 - 52.11427444 1

-56.71481482 + 84.1592048 I

-56.71481482 - 84.1592048 ¥
Factored form gain mult-plier: 306.5894329%

Plant Case: & Element: {2, 1}



Roots of Numerator

-14.76364568
-14.76364568
-17.13211925
-17.13211925

21.98417326 ¥
21.98417326 1
86.63467236 I
86.63467236 I

Roots of Denominator

-62.127 -

Factored form gain multiplier: 3497.843174

Plant Case: 6 Element:

(2, 2}

Roots of Numerator

-14.76364568
-14.76364568
-17.13211925
-17.13211925

21.98417326
21.9841732¢6
86.63467236
86.63467236

HHHRR

.19868415 I
.19868415 I
33.19991301 1
33.19991301 1
85.0195617 I
85.0195617 1

Roots of Denominator

-0.1366001171
-13.
-13.
-14.924 «+
-14.924 -
-62.127 «+
-62.127 -

Factored form gain multiplier: -205.312979

Plant Case: 6 Element:

{2, 3)

Roots of Numerator

-14.76364568
-14.76364568
-17.13211925
-17.13211925

21.98417326 I
21.98417326 I
86.63467236 1
86.63467236 1

+ 15.19868415 I

- 15.19868415 1
33.19991301 1
33.19991301 1
85.0195617 I
85.0195617 1

Roots of Denominator

-13.
-13.
-14.924 +
-14.924 -
-62.127 «+
-62.127 -

Factored form gain multiplier: 3216.43883

Plant Case: 6 Element:

3. 1}

Roots of Numerator

.59067855
.59067855
.88667476
.88667476
.81227537
.81227537

Factored fcim gain multaipsier: -1570.

Plant Case: 5 Element:

.191713381
.-3171381
.91844932
.91844932
.93326683
.93326683

o

(3, 2}

Roots of Numerater

.59067855
.59067855
.88667476
.88667476
-55.81227537
-55.81227537

Factored form gain multiplier: -7929.

Plant Case: 5 Element:

.19171381
.19171381
.91844932
.91844932
.93326683
.93326683

HHHMHHMH

{3, 3}

Roots of Numerator

.59067855
.59067355
.BB6L7476
.8866747¢6
.81227537
.81227537

-

LI N B BN )

.19171381
.19171381
.91844932
.91844932
.93326683
.93326683

=t et

.19868415 I

- 15.19868415 I
33.19991301 1
33.19991301 1
85.0195617 1
85.0195617 1

Roots of Denominator

0.2210511777
-12.38008903
-12.38008903
~14.99454494
-14.99454494
-50.5611786
-50.5611786
~54.3552077
~54.3552077
318368

r o+ 0+

11.5545971 1
11.5545971 1
42.44663728 I
42.44663728 1
50.6784398 I
50.6784%¢5 T
83.7390214 I
83.7490214 1

Roots of Denominator

.74494582
.74494582
.39404714
.39404714
07711236
.07711236
.84457175
.84457175
069071

-54

.09618803 1
.03618803 I
.2455865 I

.2455865 I

.46758105 1
.46758105 1
.77539572 1
.77539572 1

Roots of Denominatcr

-0.1126673471
-13.15110836
-13.15110836
-15.73743682
-15.73745682
-49.65339301
-49.65339301
~55.2784838
-55.2784838

168
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15.
15

94448679
.94448679
42.03080543
42.03080543
£2.15007315
52.15007315
83.79977156 I
83.79977155 1

ot




Factorea form gain multiplier: -847.2818333

Press RETURN for next plant, enter a nlant number, or 0 1f done:

Plant Case: 7 Element: {1, 1}

Roots of Numerator Roots of Denominator

-15.59067855 + 41.1917i381 I -0.536633144
-15.59067855 - 41.19171381 I ~13.82385478 + 18.61042872 1
~21.88667476 + 32.91844932 1 -13.82385478 - 18.61043872 I
-21.88667476 - 32.91844932 I ~15.95495777 + 39.42818093 1
-55.81227536 + 83.93326083 I -15.95495777 -~ 39.42818093 .
-55.81227536 -~ 83.93326683 1 -48.70565529 + 53.66243292 1
-48.7056552% - 53.66243292 1
-57.65121702 + 84.21232942 1
-57.65121702 - 84.21232942 1
Factored form gain multiplier: 378.71161903
Plant Case: 7 Element: {1, 2}
Roots of Numerator Roots of Denominator
-15.59067855 + 41.19171381 I -13.35268454 + 16.65678236 I
-15.59067855 -~ 41.19171381 I -13.36268454 - 16.65678236 I
~-21.88667476 + 32.91844932 1 -15.64223442 + 35.64547173 7
-21.88667476 - 32.91844932 1 -15.64223442 - 39.64547172 1
-55.81227536 + 83.93326683 I -49.17003703 + 52.94480699 1
-55.81227536 - 83.93326683 I -49.17003703 - $2.2448069% I
-57.22306713 + 84.18279199 1
-57.22306713 - 84.18279199 1

Factored form gain multiplier: 1168.558518

Plant Case: 7 Element: {1, 3}

Roots of Numerator Roots of Denominator
-15.59067855 + 41.19171382 I 0.2385145022

-15 59(6785% 41.15171381 I -12,74973115) « 13.7726672 1
~21.88667476 + 32.91844932 1 «12.74971151 -~ 13.7726672 I
-21.88667476 -~ 32.91844932 1 -15.27249035 + 39.85762199 I
~55.81227536 + 83.93326683 1 -15.,27249035 ~ 39.85762199 1
-55.81227536 - 83.93326683 I -49.68 + 52.11427444 I

-49.68 -~ 52.11427444 1

-56.71481482 ~ 84.1592048 1

-56.71581482 - 84.1592048 1
Factored form gain multiplier: 306.6894329

Plant Case: 7 Element: {2, 1}

Plant

Plant

Roots of Numerator Roots of Denominator
-14.76364568 + 21.98417326 1 =13, + 15.19868415 I
-14.76364568 ~ 21.98417326 I <13, - 15.19868415 1
-17.13211925 + 8( 53467236 I -14.924 + 33.15991301 I
-17.13211925 - 86 467236 I -14.924 - 33.315991301 1

-62.127 + 85.0195617 1
-62.127 - 85.0195617 I
Factored form gain rmultiplier: 1746.921587

Case: 7 Element: (2, 2}

Roots of Numerator Roots c¢f Denominator
-14.76364568 + 21.98417326 -0.1366001171
-14.76364508 - 21.98417326 -313. + 15.19868415 I
-17.13211925 + 86.63467236 -13. - 15.19868415 1
-17.13211925 - 86.63467236 -14.924 + 33.1999130]1 1

-14 924 - 33.19991301 1

-62.127 + 85.0195617 1

-62.127 - 85.0195617 1
Factored form gain multiplier: -205.31297%

[N R e ]

Case: 7 FElement: {2, 3)
Roots of Numerator Roots of Denominator
-14.763645A8 + 21.98417326 1 -13., + 15.19868415 71
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-14.76364568 - 21.98417326 I
-17.13211925 + 86.63467236 1
-17.13211925 - 86.63467236 1

Plant Case: 7 Element: {3, 1}

Roots of Numerator

-15.59067855
-15.58067855
-21.88667476
-21.88667476
-55.81227536
-55.81227536

Factored form gain multiplier: -1570.

41.19171381
41.19171381
32.91844932
32.91844932
83.93326683
83.93326683

Plant Case: 7 Element: {3, 2)

Roots of Numerator

-15.59067855
-15.59067855
-21.88667476
-21.88667476
-55.81227536
-55.81227536

Factored form gain multiplier: -3964.

41.19171381
41.19171381
32.91844932
32.91844932
83.93326683
83.93326683

Plant Case: 7 Element: (3, 3}

Roots of Numerator

-15.59067855
-15.59067855
-21.88667476
-21.88667476
-55.81227536
-55.8122753¢

41.19171381
41.19171381

2.91844932
32.91844932
83.93326683
83.93326683

e e RN R e, ]

F

HrEHRMHHMH

-13.

-14
-14
-62
-62

- 15.19868415 1

.924 + 33.19991301 T
.924 - 33.1999130:1 =
.127 + 85.0195617 I
.127 - 85.0195617 1
Factored form gain multiplier: 1608.219415

Roots of Denominator

0.2210511777

-12.38008903 + 11.5545971 I
-12.38008903 - 11.5545971 I
-14.99454494 + 42.44663728 1
-14.99454494 - 42.44663728 I
-50.5611786 + 50.6784398 I
-50.5611786 - 50.6784398 1
-54.3552077 + 83.7490214 1
-54.3552077 - 83.7490214 I
318368
Roots of Denominator
-12.74494582 + 14.09618803 I
-12.74494582 - 14.09618803 I
-15.39404714 + 42.2455865 1
-15.39404714 - 42.2455865 I
-50.07711236 + 51.46758105 I
-50.07711236 - 51.46758105 I
-54.84457175 + 83.77539572 1
-54.84457175 - 83.77539572 I
534536
Roots of Denomsnator
-0.1126673471
-13.15110836 + 15.94448675 1
-13.15110836 - 15.94448679 1
-15.73743682 + 42.03080543 1
-15.73743682 - 42.03080543 1
-49.65339301 + 52.15007315 I
~19.65339301 - 52.15007315 I
~-55,2784838 + 83.79977156 1
-55.,2784838 - 83.79977156 I

Factored {oim gain multiplier: -847.2818333

Flant Case: 8 Element: {1, 1}

Roots of Numerator

-15.59067855
-15.59067855
-21.88667476
-21.88667476
-55.81227537
-55.81227537

41.19171381
41.19171381
32.91844932
32.91844932
83.93326683
83.93326683

= )

Roots of Denominator

-0.536633144

-13.

-13

~15.
-15.
-48.

-48
-57
-57

82385478
.82385478
95495777
95495777
70565529
.70565529
.65121702
.651217902

LI S T S I N B S

Factored form gain muitiplier: 378.7116103

Pla.uc Case: 8 Element: {1, 2)

Roots of Numerator

-15.59067855
-15.59067855
-21.88667476
-21.88667476

41.19171381
41.19171381
32.91844932
32.918443932

A

.61043872
.61043372
.42818093
.42818093
.66243262
.66243292
.21232942
.24232942

bt e bt bl b bd b

Roots of Denominator

.36268454 +
.26268454 -
-

.64223442

.64223442

170
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.65678236
.65678236
.64547173
.64547173
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-55.81227537 + 83.93326683 1 -49.17003703

-55.81227537 - 83,93326683 1 -49.17003703
-57.22306713
-67.22306713

Factored form gain multiplier: 778.9723453

52.94480692
.94480099
84.1827919
84.132791°9

[ N
i
N

e R N ]

Plant Case: 8 Element: {1, 3}

Roots of Numerator Roots of Denominator

-15.59067855 + 41.19171381

-15.59067855 - 41.,19171381

-21.88667476 + 32.91844932
+

0.2385145022

-12.74971151 + 13.7726672 1
-12,74971151 - 13.7726672 I
-15.2724903% + 39.85762199 I
~-15.27249035 - 39.85762199 I
-49.68 + 52.11427444 1
-49.68 - 52.11427444 1
-56.71481482 + 84.1592048 I
-56.71481482 - 34.1592048 I
Factored form gain multiplier: 306.6894329

-21.88667476 - 32.91844932
-55.81227537 + 83.93326683
-55.81227537 - 83.93326683

O - H

Plant Case: 8 Flement: (2, 1}

Roots of Numerator Roots of Denominator
-14.76364568 + 21.98417326 I -13. + 15.19868415 I
-14.76364568 - 21.98417326 I -13, - 15.19868415 I
-17.13211925 + 86.63467236 I -14,924 + 33.19991301 I
-17.13211925 - 86.63467236 1 -14.924 - 33.19991301 1

-62.127 + 85.0195617 I
-62.,127 - £5.0195617 1
Factored form gain multaplier: 1165.947725

Plant Case: 8 Element: {2, 2}

Roots of Numerator Roots of Denominator
-14.76364568 + 21.98417326 I -0.1366001171
-14.76364568 - 21.98417326 1 -13, + 15.19868415 I
-17.13211925 + 86.63467236 1 -13. - 15.19868415 1
-17.13211925 - 86.63467236 1 -14.924 + 33.19991301 I

-14.924 - 33.18991301 I

~-62.127 + 85.0195617 I

-62.127 - 85.0195617 I
Factored form acain multiplier: -205.312979

Plant Case: 8 Element: {2, 3)

Roots of Numerator Roots of Denominator
-14.76364568 + 21.98417326 I -13. + 15.19868415 1
-14.76364568 - 21.98417326 I ~13. - 15.19868415 I
-17.13211925 + 86.63467236 1 -14.924 + 33.19991301 I
-17.13211925 - 86.63467236 I -14.924 - 33.19991301 1

-62,127 + 65.0195617 1
-62,127 - 85.0195617 I
Factored form gain mulciplier: 1072.146277

Plant Case: 8 Element: {3, 1}

Roots of Numerator Roots of Denominator

-15.59067855 + 41.19171381

-15.59067855 - 41.19171381

-21.88667476 + 32.91844932
+

0.2210511777

-12.380089(3 + 11.55¢5971 I
-12.38008903 - 11.5545971 I
-14.99454494 + 42.44663728 1
-14.99454494 - 42.44663728 I

-21.88667476 - 32.91844932
-55.81227537 + 83.93326683

el R N N N

-55.81227537 83.93326683 -50.5611786 + 50.67843%%2 I
-50.5611786 -~ 50.6784398 I
-54.,3552077 + 83.7490214 I
-54.3552077 - ©3.7490214 I

Factored form gain multiplier: -1570.318368

Plant Case: 8 Element: (3, 2}
Roots of Numerator Roots of Denominator
~-15.59067855 + 41.19171381 I -12.74494582 + 14.09618803 1
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-15.59067855
-21.88667476
-21.88667476
-55.81227537
-55.81227537

41.19171381
32.91844932
32.91844932
83.93326683
83.93326683

Fed e bt e

t+ 1

Factored form gain multiplier:

Plant Case: 8 Element: {3, 3}

Rcots of Numeratorv

-15.55067855 + 41.,19171381
-15.59067855 - 41.19171381
-21.88667476 + 32.91844932
-21.88667476 -~ 32.91844932
-55.81227537 + 83.93326683
-55.81227537 - 83.93326685

PO e

Factored form gain raltiplier:

Plant Case: 9 Element: {1, 1)

Roots of Numerator
-15.59093272 + 41.1814354 1
-15.59093272 - 41.1814354 1
~21,95984556 + 33.01640834 I
~21.95984556 - 33.01640834 I
-55.819€473 + 83.9352645 1
-55.8198473 - 83.9352645 1

Factored form gain multipl:ier:

Plant Case: 9 Element: {1, 2}

Roots of Numerator

Factored form gain multiplier:

Plant Case: 9 Element: {1, 3}

Roots of Numerator
-15.59093272 + 41.1814354 I
~-15.59093272 - 41,1814354 I
-21.95984556 + 33.01640834 I
-21.95984556 - 33.01640834 I
-55.8199473 + 83.935264S I
-55.8155473 - B3.9352645 I

Factored form gain multiplier:

Plant Case: 9 Element: {2, 1}

Roots of Numerator

Factored form gain multiplier:

Plant Case: 9 Element: {2, 2)

Roots of Numerator

~-14.75644431 + 21.95264007
-14.75644431 - 21.95264007
-17.06037998 + 86.618648¢52
-17.06037998 - 86.51864862

I RN ]

-12.74494582
-15.39404714
-15.39404714
-50.07711236
-50.07711236
-54.84457175
-54.84457175
-2643.023024

14.09618803 1
42.2455865 I
42.2455865 1
.46758105 I
51.46758105 I
83.77539572 1
83.77539572 I

(I S . I I |
wm
—

Roots of Denominator
-0.1126673471
-13.15110836
-13.15110836
-15.73743682
-15.73743682 42,03080543
-49.65339301 52.15007315
-49.65339301 - 52.15007315
-55.2784838 + 83.79977156 I
-55.2784838 - 83.79977156 I
-847.2818333

15.94448679
15.94448679
42.03080543

+ 14 o+

=t = ot

Roots of Denominator
-0.4972344919
-13.84370684 + 18.6632871 I
-13.84370684 - 18.6632871 I
-15.96173093 + 39.41716877 I
-15.96173093 - 39.41716877 1
-48.6967764 + 53.67744786 1
-48.6967764 -~ $3.67744786 1
-57.66651368 + 84.21444127 1
-57.66651368 - 84.21444127 I
375.1581079

Roots of Denominator

Infinmity

Roots of Denominator
0.2267657302
-12.,73774686 + 13.7320958 1
-12.73774686 - 13.7320958 1
-15.26905449 + 39.84154152 1
-15.26905449 - 39.84154152 1
-49.68 + 52.11427444 I
-4¢.68 - 52.11427444 1
-56.7232334 + 84.1603752 I
-56.7232334 - 84.1603752 1
305.0250419

Roots of Denominator

Infinity

Roots of Denominator
-G.1252573635

-13. + 15.19868415 1
-13. - 15.19868415 ¢
-14.924 + 33.199913C1 1
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Factored form gain multiplier:
Plant Case: 9 Element: {2, 3}

Roots of Numerator

Factored form gain multiplier:

Plant Case: 9 Element: {3, 1}

Roots of Numerator
-15.59093272 + 41.1814354 I
-15.59093272 - 41.1814354 I
-21.95984556 + 33.01640834 1
-21.95984556 - 33.01640834 I
-55.8198473 ~ 83.9352645 I
-55.8198473 - 82.9352645 1I

Factored form gain multiplier:
Plant Case: 9 Element: {3, 2}

Roots of Numerator

Factored form gain multiplier:
Plant Case: 9 Element: {3, 3}

Roots of Numerator
~15.59093272 + 41.1814354 1
-15.59093272 - 41.1814354 1
-21.95984556 + 33.01640834 I
-21.95984556 - 33.01640834 ¥
-55.8198473 + 83.9352645 1
-55.8198473 - 83.9352645 1

Factored form gain multiplier:

Plant Case: 10 Element: {1, 1}

Roots of Numerator
-15.59093272 + 41.1814354 I
-15.59093272 - 41.1814354 1
-21.95984556 + 33.01640834 1
-21.95984556 - 33.01640834 I
-55.8198473 + 83.9352645 1
-55.8198473 - 83.9352645 1

Factored form gain multiplier:
Plant Case: 10 Element: {1, 2}

Roots of Numerator
-15.59093272 + 41.1814354 I
-15.59093272 - 41.1814354 1
-21.95984556 + 33.01640834 I
-21.95984556 -~ 33.01640834 I
-55.8198473 + 83.9352645 1
-55.8198473 - 83.9352645 I

Factored form gain multipl:er:

-512.9038558

-14.924 - 33.19991301 I
-62.127 + 85.0195617 I
-62.127 - 85.019%56i7 I

-207.0716183

Roots of Denominator

Infinity

Roots of Denominator
0.2186105805
-12.35458828
-12.35458828
-14.98296916
-14.98296916
-50.57188104
-50.57188104
-54,.35317582
-54.35317582

11.45254297
11.45254297
42.43676453
42.43676453
50.65834723
50.65834723
83.75141081
83.75141081

P e A

T+ 0+ 10 4+t

-1563.060716

Roots of Denominator

Infinity

Roots of Denominator
-0.1074664032
-13.15738138 + 15.96338795 I
-13.15738138 - 15.96338795 I
-15.73875728 + 42.0259814 I
-15.73875728 - 42.0259814 I
-49.65523805 + 52.14751366
-49.65523805 - 52.14751366
-55.28583411 + 83.80254912
- 83.80254913 1

o]

-55.28583411

Roots of Denom:inator
-0.4972344919

-13.84370684 + 18.6632871 I
-13.84370684 ~ 18.6632871 I
-15.96173093 « 39.41716877 I
-15.96173093 - 39.41716877 I
-48.6967764 + 53.67744786 I
-48.6967764 - 53.67744785 1
-57.66651368 + 84.21444127 1
-57.66651368 - 84.21444127 1

375.15819079

Roots of Denominator

-13.36883211 + 16.680463 I
-13.36883211 - 16.680463 I
-15.64460511 + 39.63256137 I
-15.64460511 - 39.63256137 I
-49.16313728 + 52.95596268 I
-49.16313728 -~ 52.95596268 I
-57.23%92922 + 84.18455711 1
-57.23592922 - R4.18455711 1
23'™ 10383
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Plant Case: 10 Element: (1, 3}

Roots of Numerator Roots of Denominator
-15.59093272 + 41.1814354 I 0.2267657302

-15.59093272 - 41.1814354 I -12.73774686 + 13.7320958 I
~21.95984556 + 33.01640834 I -12.73774686 - 13.7320958 1
-21.95984556 -~ 33.01640834 1 -15.26905449 « 39.84154152 1
-55.8198473 + 83.9352645 I -15.26905449 - 39.84154152 I
-55.8193473 ~ 83.9352645 1 -49.68 + 52.11427444 1

-49.68 - 52.11427444 I

-56.7232334 + 84.1603752 1

-56.7232334 - 84.1603752 1
Factored form gain multiplier: 305.0250419

Plant Case: 10 Element: {2, 1}

Roots of Numerator Roots of Denominator
-14.75644431 + 21.95264007 1 -13. + 15.19868415 I
~14.75644431 - 21.95264007 I -13. - 15.19868415 I
-17.06037998 + 86.61864862 1 -14.924 + 33.19991301 1
-17.06037998 - 86.61864862 I -14.924 - 33.19991301 1

-62.127 + 85.0195617 I
-62.127 -~ 85.0195617 I
Factored form gain multiplier: 3527.804478

Plant Case: 10 Element: {2, 2}

Roots of Numerator Roots of Denominator
~14.75644431 + 21.95264007 1 -0.1252573635
-14.75644431 - 21.95264007 I -13. + 15.19868415 I
-17.06037998 + 86.61864862 I -13. - 15.19868415 I
-17.06037998 - 86.61864862 I -14.924 + 33.199%1301 I

-14.924 - 33.19991301 1

-62.127 + 85.019%617 1

-62.127 - 85.0195617 1
Factored form gain multiplier: -207.0716183

Plant Case: 10 Element: {2, 3}

Roots of Numerator Roots of Denominator
-14.75644431 + 21.95264007 1 -13. + 15.19868415 I
~14.75644431 - 21.95264007 I -13. - 15.19868415 I
-17.06037998 + 86.61864862 I -14.924 + 33.19991301 1
-17.06037998 - 86.61864862 I -14.924 - 33.19991301 I

-62.127 + 85.0195617 1
-62.127 - 85.0195617 I
Factored form gain multiplier: 3243.989723

Plant Case: 10 Element: {3, 1)

Roots of Numerator Roots of Denominator
-15.59093272 + 41.1814354 I 0.2186105805
-15.59093272 - 41.1814354 I -12.35458828 + 11.45254297 1
-21.95984556 + 33.01640834 I -~12.35458828 - 11.45254297 1
-21.95984556 - 33.01640834 I ~14.98296916 + 42.43676453 1
-55.8198473 + 83.9352645 1 -14.98296916 - 42.43676453 1
-55.8198473 - 83.9352645 1 -50.57188104 + 50.65834723 1
-50.57188104 - 50.65834723 1
-54.35317582 + 83.75141081 1
-54.35317582 - 83.75141081 I
Factored form gain multiplier: -1563.060716
Plant Case: 10 Element: (3, 2}
Roots of Numerator Roots of Denominator
-15.59093272 + 41.1814354 1 -12.73989941 + 14.07341303 I
-15.59093272 - 41.181435%4 I -12.73989941 - 14 07241303 1
~-21.95984556 + 33.01640834 I -15.38902306 + 42.23875741 1
-21.95984556 - 33.01640834 I -15.38902306 - 42.23875741 1
-55.8198473 + 83.9352645 I -50.08336965 + 51.4572361 I
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-55.8198473 - 83.9352645 I

Factored form gain multiplier:

Plant Case: 10 Element: {3, 3}

Roots of Numerator
-15.59093272 + 41.1814354 1
-15.59093272 - 41.1814354 I
-21.95984556 + 33.01640834 I
-21.95984556 -~ 33.01640834 I
-55.8198473 + 83.9352645 1
-55.8198473 - 8,.9352645 I

Factored form gain multiplier:

Plant Case: 11 Element: {1, 1}

Roots of Numerator
-15.59093272 + 41.1814354 1
-15.59093272 - 41.1814354 I
-21.95984556 + 33.01C40834 I
-21.95984556 - 33.01640834 I
-55.8198473 + 83.9352645 1
-55.8198473 - 83.9352645 I

Factored form gain multiplier:

Plant Case: i1 Element: (1, 2}

Roots of Numerator
-15.59093272 + 41.1814354 I
-15.59093272 - 41.1814354 1
-21.95984556 + 33.01640834 I
-21.95984556 - 33.01640834 1
-55.8198473 + 83.9352645 1
~55.8198473 - 83.9352645 I

Factcred form gain multimlier:

Plant Case: 11 Element: {1, 3}

Roots of Numerator
-15.59093272 + 41.1814354 I
-15.59093272 - 41.1814354 1
-21.95984556 + 33.01640834 I
-21,9598455€ - 33.01640834 I
-55.8198473 + 83.9352645 I
-55.8198473 - 83.9352645 1

Factored form gain multiplier:

Plant Case: 11 Element: {2, 1}

Roots of Numerator

-14.75644431 + 21.,95264007 I
-14.75644431 - 21.95264007 1
-17.06037998 + 86.61864862 I
-17.06037998 - 86.61864862 I

Factored form gain multiplier:

Plant Case: 11 Element: {2, 2}

-842.9038558

1159.555192

-50.08336965 - 51.4572361 I
-54.84749847 + 83.77787304 I
-54.84749647 - 83.77787304 I

-7890.066094

Roots of Denominator
-0.1074664032
-13.15738138
-13.15738138
-15,73875728
-15,73875728
-49,65523805
-49.65523805
-55.28583411
-55.28583411

15.96338795 I
15.96238795 I
42.0259814 I

42.0259814 1

.14751366 I
52.14751366 1
83.80254913 1
83.80254913 1

[ S B Y B S R 4
[
[ )

Roots of Denominator
-0.4972344919

-13.84370684 + 18.6632871 I
-13.84370684 ~ 18.6632871 I
-15.96173093 + 39.41716877 1
-15.96173093 - 39.41716877 I
-48.6967764 + 53.67744786 1
-48.6967764 - 53.67744786 1
-57.66651368 + 84.21444127 1
-57.66651368 - 84.21444127 I

375.1581079

Roots of Denominator

-13.36883211 + 16.680463 I
~13.36883211 - 16.680463 I
~-15.64460511 + 39.63256137
-15.64460511 - 39.63256137
-49,16313728 + 52.95596268
-49.16313728 - 52.95596268
-57.23592922 + 84.18455711
-57.23592922 - 84.18455711

bt e

Roots of Denominator
0.2267657302

-12.73774686 + 13.73209%8 I
-12.73774686 - 13.7320958 1
-15.26905449 + 39.841%4152 1
-15.26905449 - 39.84154152 1
~49.68 + 52.11427444 1
-49.68 - 52.11427444 1
-56.7232334 +~ 84.1603752 I
-56.7232334 - 84.1603752 I

305.0250419

Roots of Denominator

-13. + 15.19868415 1
-13. - 1£.19868415 1
-14.924 + 33.19991301 I
-14.924 - 33.19951301 I
-62.127 + 85.0195617 1

-62.177 - 85.0195617 1

1763.902239
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Rcots of Numerator

-14.75644431 + 21.95264007 I
-14.75647431 - 21.95264007 I
-17.06037998 + 85.61864862 1
-17.06037998 - 86.61864862 I

Factored form 7ain multiplier:

Plant Case: 11

Element:

{2, 3)

Roots of Numerator

-14.75644431
-14.75644431
-17.06037998
-17.06037998

21.95264007 I
21.95264007 I
£6.61864862 I
86.61864862 I

Plant Case:

Plant Case: 11

Plant Case: 11

Plant Case: 12

Factored form gain multiplier:

11 Element: {3, 1)

Roots of Numerator

-15.59093272 + 41.1814354 I
-15.59093272 - 41.1814354 1
-21.95984556 + 33.,0164(834 I
-21.95984556 - 33.01640834 I

-55.8198473 + 83.9352645 I
-55.8198473 - 83.9352645 I

Factored form gain multiplier:

Element: {3, 2}

Roots of Numerator
-15.59093272 + 41.1814354 1
-15.59093272 - 41.1814354 1
-21.95984556 + 33.01640834 1
-21.95984556 - 33,01640834 1
-55.8198473 + 83.9352645 1
-55.8198473 - 83.9352645 1

Factored form gain multiplier:

Element: {3, 3}

Roots of Numerator

.59093272 + 41.18143%4 1
.59093272 - 41.1814354 1
.95984556 + 33.01640834 1
.95984556 - 33.01640834 1
.8198473 + 83.93%52645 1
.8198473 -~ 83.,935264% 1

Factored form gain multiplier:

Element: {1, 1}

Roots of Numerator

-15.59093272 + 41.1814354 1

Roots of Dcnominator
-0.1252573635%

-13. + 15,19868415 1
-13. - 15.19868415 I
-14.924 + 33.199°1301 1
-14.924 -~ 33.19591301 1
-62.127 + 85.0163617 1
-62.127 - 85.0195617 1

-207.0716183

Roots of Denominator

-13. + 15.19868415 1

-~ 15.19868415 I
-14.924 + 33.19991301 I
-14.924 - 33.19991301 I
-62.127 + 85.0195617 I
-62.127 - 85.0195617 I

1621.994861

Roots of Denominator

0.2186105805

-12,35458828 + 11.45254297 1
-12.35458828 - 11,45254297 I
-14.98296916 + 42.43676453 1
-14.98296916 - 42.43676453 1
-50.57188104 + 50.65834723 1
-50,57188104 - 50.65834723 1
-54.35317582 « 83.75141081 I
-54.35317582 - 83.75141081 I
-1563.060716
Roots of Denominator
-12.73989941 + 14.07341303 1
-12,73989941 - 14.07341303 1
-15.38902306 + 42.23875741 1
-15.38902306 - 42.23875741 1
-50.08336965 + 51.4572361 I
-50.08336965 - 51.4572361 I
-54,84749847 + 83.77787304 1
-54.84749847 - 83.77787304 1
-3945.033047
Roots of Denominator
-0.1074664032
-13.15738138 + 15.96338795 I
-13.15738138 - 15.96338795 I
~15.73875728 + 42,0259814 7T
-15.73875728 - 42.0259814 I
-49.65523805 + 52.14751366 1
-49.65523805 - 52.14751366 I
-55,28583411 + 83.80254913 1
-55.28583411 -~ 83.80254913 I

-842.9038558

Roots of Denominator

-0.4972344919
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-15.59093272 - 41.1814354 T
-21.95984556 + 33.01640834 I
-21.95984556 - 33.01640834 1
-55.8198473 + 83.9352645 I
-55.8198473 - 83.9352645 I

Factored form gain multiplier:

Plant Case: 12 Element: {1, 2}

Roots of Numerator
-15.59093272 + 41.1814354 1
~15.59093272 - 41.181435%4 I
-21.95984556 + 33.01640834 1
~21.95984556 - 33.01640834 1
-55.8198473 + 83,9352645 1
-55.8198473 - 83.9352645 1

Factored form gain multiplier:

Plant Case: 12 Element: {1, 3}

Roots of Numerator
-15.59093272 + 41.1814354 1
-15.59093272 - 41.1814354 1
-21.95984556 + 33.01640834 I
-21.95984556 - 33.01640834 1
-55.8198473 + 83.9352645 1
-55.8198473 - 83.935264% I

Factored form gain multiplier:

Plant Case: 12 Element: {2, 1}

Roots of Numerator

-14.75644431 + 21.95264007 1
~-14.75644431 - 21.95264007 I
-17.06037998 + 86.61864862 I
-17.06037998 - 86.61864862 I

Factored form gain multiplier:

Plant Case: 12 Element: {2, 2}

Roots of Numerator

-14,75644431 + 21.95264007 I
-14.75644431 - 21.95264007 I
-17.06037998 + 86.61864862 1
-17.06037998 - 86.61864862 I

Factored form gain multiplier:

Plant Case: 12 Element: {2, 3}

Roots of Numerator

-14,75644431 + 21.95264007 1
-14.75644431 - 21.95264007 I
-17.06037998 + 86.61864862 1
-17.06037998 - 86.61864862 1

Factored form gain multiplier:

Plant Case: 12 Element: {3, 1}

-13.84370684
-13.84370684
-15.96173093

+-

-

18.6632871 I
18.6632871 I
39.41716877 1

-15.96173093 - 39.41716877 1
-48.6967764 ~ 53.67744786 I
-48.6967764 - 53.67744786 I
-57.66651368 - 84.21444127 I
-87.66651368 - 84.21444127 1

375.1581079

Roots of Denominator

-13.36883211
-13.36883211
-15.64460511
-15.64460511
-49.16313728
-49.16313728
-57.23592922
-57.23592922
773.0367945

16.680463 I
16.680463 I
39.63256137
39.63256137
$2.95596268
52.95596268
84.18455711
84.18455711

e e R N R N ]

Roots of Denominator

0.2267657302
-12.73774686
-12.73774686
-15.26905449
-15.2690£149

13.73209%8 1
13.73209S8 1
39.84154152 1
39.84154152 1

-49.68 + 52 11427444 I
-49,68 - 52.11427444 1
-56.7232334 + 84.1603752 =
-56.7232334 - 84.1603752 1

305.0250419

Roots of Denominator
-13. + 15.19868415 1
-13. - 15,19868415 1
-14.924 + 33.19991301 I
-14.924 - 33.19991301 ¥
-62.127 + 85.0195617 I
-62.127 - 85.0195617 I

1175.934826

Rocts of Denominator

-.1252573635

-13. + 15.19868415 I
-13. - 15.19868415 I
-14.924 + 33.19991301 I
-14.924 - 33.19991301 I
-62.127 + 85.0195617 1
-62.127 - 85.0195617 I

-207.0716183

Roots of Denominator
-13. + 15.19868415 I
-13. - 15.,19868415 I
-14.924 + 33.19991301 I
-14.924 - 33.19991301 I
-62.127 + 85.0195617 1
-62.127 - 85.0195617 T

1081.325908
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Plant Case:

Plant Case:

Roots of Numerator

Factored form gain multiplier:

.59093272 + 41.1814354 I
.59093272 - 41.181435%4 1
.95984556 + 33.01640834 I
.95984556 - 33.01640834 I
.8198473 + 83.9352645 I
.8198473 - 83,93572645 I

12 Element: (3, 2}

Roots of Numerator

-55.

Factored form gain multiplier:

.59093272 + 41.1814354 1
.59093272 - 41,1814354 I
.95984556 + 33.01640834 I
.95984556 - 33.01640834 I
.8198473 + 83.9352645 1

8198473 - 83.9352645 1

12 Element: {3, 3}

Roots of Numerator

Factored form gain multiplier:

.59093272 + 41.1814354 I
.59093272 - 41.181435%4 1
.95984556 + 33.01640834 I
.95984556 - 33.01640834 I
.8198473 + 83.9352645 I
.8198473 - 83.9352645 I

Roots of Denominator

0.2186105805

-12
-12
-14
-14

~-54
-54
-1563

.35458828
..5458828
.98296916
.98296916
-50.
-50.
.35317582
.35317582
.060716

57188104
57188104

+ 11

+ 42
- 42

+ 83

.45254297
- 11.
.43676453
.43676453
+ S50.
- 50.
.75141081
.75141081

45254297

65834723
65834723

Pt bt

Roots of Denom:nator

.73989941
.73989941
.38902306
.38902306
.08336965
.08336965
.84749847
.£4749847
.022031

.07341303
.07341303
.23875741
.23875741 I
.4572361 I
.4572361 1
.77787304 1
.77787304 1

e

-0.1074664032
-13.
-13.
-15.
-18.
-49.

-49
-55

15738138
15738138
734875728
73875728
65523805

.65523805
-55.

28583411
28583411

-842.9038558

.96338795 I
.96338795 I
.0259814 1
.0259814 1
.14751366
.14751366
.80254913
.80254913

oA



D.2. Q Matrix Bode Plot
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Appendix E: Closed-Loop Simulations

+ his chapter presents the closed-loop simulations used to validate the QFT design. Validation tests

are performed on a three DOF model, a six DOF model with no actuator limits, and a six DOF model with

actuator limits. Control group deflection commands are also presented for each simulation.
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E.1. Closed-Loop Three DOF Simulations

Response to 20 Deg/sec Roll Rate Command : 10kft, Pparam=0
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Figure 82. Response to Roll Command, Clesed-Loop System, Pparam=0, 10kft

Control Effector Group Commands : 10kit, Pparam=0
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Figure 83. Control Effector Group Commands, Closed-Loop System, Pparam=0, 10kft



Response to 20 Deg/sec Roll Rate Command : 10kft, Pparam=8
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Figure 84. Response to Roll Command, Closed-Loop System, Pparam=8, 10kft

Control Effector Group Commands : 10kft, Pparam=8
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Figure 85. Control Effector Group Commands, Closed-Loop System, Pparam=8, 10kft




Response to 20 Deg/sec Roll Rate Command : 10kft, Pparam=16
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Figure 86. Response to Roll Command, Closed-Loop System, Pparam=16, 10kft

Controt Effector Group Cormmands : 10kft, Pparam=16
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Figure 87. Control Effector Group Commands, Closed-Loop System, Pparam=16, 10kft
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Response to 20 Deg/sec Roll Rate Command : 10kft, Pparam=24
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Figure 88. Response to Roll Command, Closed-Loop System, Pparam=24, 10kft

Control Effector Group Commands : 10kft, Pparam=24
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Figure 89. Control Effector Group Commands, Closed-Loop System, Pparam=24, 10kft
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Response to 20 Deg/sec Roll Rate Command : 15kft, Pparam=24
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Figure 50. Response to Roll Command, Closed-Loop System, Pparam=24, 15kft

Control Effector Group Commands : 15kft, Pparam=24
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Figure 91. Control Effector Group Commands, Closed-Loop System:, Pparam=24, 15kft




Response to 20 Deg/sec Roll Rate Command : 20kft, Pparam=24
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Figure 92. Response to Roll Command, Closed-Loop System, Pparam=24, 20kft

Controi Effector Group Commands : 20kft, Pparam=24
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Figure 93. Control Effector Group Commands, Closed-Loop System, Pparam=24, 20kft
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E.2. Closed-Loop Six DOF Simulations, No Actuator Limits

Response to 20 Deg/sec Fil Rate Command : 10kit, No Actuator Limits
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Figire 94. Response ’to Roll Command, Closed-Loop 6

DOF System, 10kft

Control Effector Group Commands : 10kft, No Actuator Limits
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Figure 95. Control Effector Group Commands, Closed-Loop 6 DOF System, 10kft




Response to 20 Deg/sec Roll Rate Command : 15kit, No Actuator Limits
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Figure 96. Response to Roll Command, Closed-Loop 6 DOF System, 15kft

Control Effector Group Commands : 15kft, No Actuator Limits
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Figure 97. Control Effector Group Commands, Closed-Loop 6 DOF System, 15kft




Response to 20 Deg/sec Roll Rate Command : 20kft, No Actuator Limits
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Figure 98. Response to Roll Command, Closed-Loop 6 DOF System, 20kft

Control Effector Group Commands : 20kft, No Actuator Limits
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Figure 99. Control Effector Group Commands, Closed-Loop 6 DOF System, 20kft
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